

Clinical Implementation of SRS/SBRT

Anil Sethi, PhD Loyola University Medical Center August 3, 2017

Physics Considerations 🐯

- System QA (Image, Plan and Treat)
- Equipment Selection
- Beam Data Measurement
- Data Validation
- End-to-End Test (Process QA)
- Tips and Tricks

Output/PDD/Profiles

- Beam Output Check: TG-51
- Send for RPC TLDs
- Beam Scans (PDD/Profiles) for MLC & cones
- Scatter factors

Small Field Challenge: Output Factors	HEALTH SYSTEM
100 TOWN SCHEFT BACKS HOLD CHILDREN REVEALED IN 100 000 000 000 000 000 000 00	
0 x2	Das <i>et al.</i> , 2000.

Which Detector to Use?

- Ensure detector size < (¼ * Field Size)</p>
- Small ion chamber (<0.1cc): stem effect/leakage.</p>
- Medium ion chamber (0.1 1.0 cc): volume averaging
 CA is under-dosed, penumbra broadened
- Recommend:
 - Unshielded diode for small fields and
 - Ion chamber for large fields

Beam Data Measurement Tips 🐷

- Check water surface (use d_{max} as reference)
- Effective point of measurement
- Align scanning system/ detectors with beam axis. Drive Up!
- Scan small field profile (< 2 cm) to verify</p> detector centering & depth correction if needed
- 0
- Repeat with MLC and cones

Measurement Tips

LOYOLA UNIVERSITY HEALTH SYSTEM

- Verify 10x10 cm PDD/profiles
- Compare in-house or from a comparable SRS machine
- Output (scatter) factors with at-least two diode detectors
 + small volume ion chamber
- Perform cross calibration before each measurement
- Daisy chain at ~4x4 cm: Perform measurements with large chamber for known MU and then deliver same MU to the small detector. Use charge ratio of output for large detector to adjust output with small detector.

More Tips

For small fields, No ref detector

Watch for Penumbra asymmetry

- Stealth detector (IBA)
- Slow speed, 20+ pts/meas
- Eliminate noise!

LOYOLA UNIVERSITY HEALTH SYSTEM

Check leakage and subtract from Output necessary

Detector Compare Penumbra Measurements					
F.S. (mm)	\rightarrow	100 x 100	30 x30	12x 12	6x6
Detector	Vendor				
CC13	IBA	5.2	4.9	4.7	3.8
A16	Std Imaging	3.8	3.3	3.1	2.4
Edge	Sun Nuclear	3.2	2.6	2.2	2.1
D1V	Std Imaging	3.0	2.3	2.2	2.1
D1H	Std Imaging	3.0	2.3	2.3	1.9
PFD	IBA	3.5	2.5	2.5	2.3
SFD	IBA	3.1	2.4	2.3	2.0
TN 60018	PTW	3	2.2	2.3	2.1

_
-

TPS Validation

- Independent MU to Dose Calc
- TG-119 (Planar Array/ ion-chamber/film)
 MU vs. Measurement for MLC and Cone
- plans
- Hetero Correction vs. Field size
- Verify Select Fields Dose/MU
- RPC/RTOG credentialing

Summary

LOYOLA UNIVERSITY HEALTH SYSTEM

- Select appropriate set of detectors for small fields
- Ensure positioning and alignment with respect to central axis
- Redundancy of measurements
 Cross check with standard data
- RTP commissioning/verification: for typical treatment fields
- System QA: Imaging/TPS/Linac

SRS Rx Dose

- Target Volume, Type, and Location
- SRS Rx dose (RTOG 95-08) max
- tolerable vs. GTV diameter:
- < 2cm: 24 Gy

LOYOLA UNIVERSITY HEALTH SYSTEM

- 3.1 4cm: 15Gy
- Mets/AVM typically treated with SRS
- Malignant lesions with SRT

SRS Treatment Planning

- LOYOLA UNIVERSITY HEALTH SYSTEM
- Follow RTOG guidelines (www.rtog.org)
- Use DVHs to get
 - target Rx Dose or D_{min}
- Volume of healthy tissue irradiated
 - Conformality index
- Target dose homogeneity (max/min target dose)
 homogeneity index
- SRS dose homogeneity is <u>relaxed</u> in favor of dose Conformality

SRS Treatment Planning HOYOLASITY HUNDERSITY

- Draw separate GTVs on CT & MR (SRS)
 - PTV = GTV
 - PTV = GTV + 2mm (SRT)
- Use composite GTV (CT + MR) for planning
- OARs (auto segmentation but verify)

SRS Treatment Planning

- Target size,
- Iocation,
- proximity to OARs
- dose fractionation.
- 3-4 VMAT Arcs
- Can also use conformal fixed fields or circular arcs

Dose constraints

Structure	Dose (Gy)	Endpoint
Optic chiasm	10	Neuritis
Cochlea	12	Hearing loss
Brainstem	15	Cranial neuropathy
Cord	14	Myelitis

Optic, auditory< trigeminal <motor CN

SRS Plan Evaluation

- Draw "Irradiated_OARs" for long structures such as cord, brain stem for accuracy.
- Examine DVHs, Rx Isodose coverage, and OAR sparing
- Conformality index (V100/PTV)
- Homogeneity index (D5/D95)

Violanne (%) 00 980 Violated EVII constraint	Man, Baren - 198 A h 19.87 Gp Man, Baren - 198 A h 78.87 Gp Man, Baren - 198 A h 78.41 Gp Dem - 198 A h 78.41 Gp
• CI =	Land and Land. Left
-	Display Options
22Gy @ 80% isodose v	Diume filingen Gright Bibliocontal BVR Weiterpetrick Gright Vitrog Camera Sales
:	Cadvallation

Case 2: Rt Occipital Met

LOYOLA UNIVERSITY HEALTH SYSTEM

4 VMAT arcs, 4 table angles, 18Gy, single fraction

4DCT Scanning

- Free breathing (FB) scan - 3x3mm slices
- 4D scan with Varian's RPM
 - ROI: (±5 cm around PTV) - 2-3 mm slice width.
- Create MIP (<u>maximum intensity projection</u>) data set. Transfer FB images & 4D sets (0%, 50%, MIP & Ave.
- Int. projection) to TPS

SBRT OARs

- Rt + Lt lung (pulmonary window)
- Heart, Trachea, Carina
- Esophagus_irrad. (± 3cm sup/inf around PTV)
- Spinal cord_irrad. (± 3cm sup/inf around PTV)
- Liver, kidneys, Small bowel, Pancreas
- *Do not include GTV/PTV in lung definition

SBRT Targets

- GTV on FB, 0%, 50% CT sets; ITV on MIP
- PTV = ITV + 3 5mm
- Create D2cm = PTV + 2cm (high dose spillage)

SBRT Dose Rx.

Loyola:

 For lung patients:
 10 - 12Gy/fx x 5 fractions = 50-60Gy BED ~ 100-150 Gy M-W-F treatments

SBRT Treatment Planning

- 6 10 MV X-rays,
- VMAT: 3 4 VMAT non-coplanar arcs or
- 3DCRT: 8 12 non-coplanar, non-opposing fields.

SBRT Plan Evaluation

- Target Coverage: 95% of PTV and 100% of GTV
- Hot spot must be less than ~10-15% & within PTV.
- Target Dose Homogeneity : < 15-20%</p>
- Dose spillage: V50/PTV (see RTOG table)

SBRT Plan Evaluation

- <u>Dose Conformality</u>: V100/PTV = 1.2 1.5 (higher values for smaller targets)
- Tighten up PTV MLC margin or adjust beam parameters to achieve better Conformality index (CI).
- Ensure small calc. grid (1mm) for small structures.

SBF	SBRT Plan Evaluation								
Table on [Table 1: Conformality of Prescribed Dose for Calculations Based on Deposition of Photon Beam Energy in Heterogeneous Tissue								
PTV Volume (cc)	Volume Prescription		Ratio of 50% Prescription Isodose Volume to the PTV Volume, R _{50%}		Maximum Dose (in % of dose prescribed) @ 2 cm from PTV in Any Direction, D _{2cm} (Gy)		Percent of Lung Receiving 20 Gy Total or More, V ₂₀ (%)		
		eviation Deviation Deviation			Deviation				
	None	Minor	None	Minor	None	Minor	None	Minor	
1.8	<1.2	<1.5	<5.9	<7.5	<50.0	<57.0	<10	<15	
3.8	<1.2	.<1.5	<5.5	<6.5	<50.0	<57.0	<10	<15	
7.4	<1.2	<1.5	<5.1	<6.0	<50.0	<58.0	<10	<15	
13.2	<1.2	<1.5	<4.7	<5.8	<50.0	<58.0	<10	<15	
22.0	<1.2	<1.5	<4.5	<5.5	<54.0	<63.0	<10	<15	
34.0	<1.2	<1.5	<4.3	<5.3	<58.0	<68.0	<10	<15	
50.0	<1.2	<1.5	<4.0	<5.0	<62.0	<77.0	<10	<15	
70.0	<1.2	<1.5	<3.5	<4.8	<66.0	<86.0	<10	<15	
95.0	<1.2	<1.5	<3.3	<4.4	<70.0	<89.0	≺10	<15	
126.0	<1.2	<1.5	<3.1	<4.0	<73.0	>91.0	<10	<15	
163.0	<1.2	<1.6	<2.9	<3.7	<77.0	>94.0	<10	<15	
	From: RTOG 0813								

OAR Dose	Cons	straints		LOYOL UNIVE HEALT
Sorial Tissue	Volume (mL)	Volume Max (Gy)	Max Point Dose (Gy) Endpoint (≥Grade 3)
	FIVE-FI	RACTION TREATM	ENT	
Optic pathway	< 0.2	20 (4 Gy/fz)	25 (5 Gy/fx)	Neuritia
Cochlea			27.5 (5.5 Gy/b)	Hearing loss
Brainstem	<1	26 (5.2 Gy/fz)	31 (6.2 Gy/fx)	Cranial neuropathy
Spinal cord	< 0.25	22.5 (4.5 Gy/fx)	30 (6 Gy/fx)	Myelitis
	<1.2	13.5 (2.7 Gy/fs)		
Cauda equina	<5	30 (6 Gy/fz)	34 (6.4 Gy/fx)	Neuritis
Sacral plexus	<3	30 (6 Gy/fe)	32 (6.4 Gy/fx)	Neuropathy
Esophagus*	<5	27.5 (5.5 Gy/fs)	35 (7 Gy/fx)	Stenosis/fistula
Ipsilateral brachial plexus	< 3	30 (6 Gy/fz)	32 (6.4 Gy/b)	Neuropathy
Heart/pericardium	<15	32 (6.4 Gy/fx)	38 (7.6 Gy/fx)	Pericarditis
Great vessels	<10	47 (9.4 Gy/fx)	53 (10.6 Gy/fz)	Aneurysm
Trachea and insilateral bronchus*	<4	18 (3.6 Gy/fz)	38 (7.6 Gy/fx)	Stenosis/fistula
Skin	<10	30 (6 Gy/fs)	32 (6.4 Gy/fx)	Ulceration
Stomach	<10	28 (5.6 Gy/fz)	32 (6.4 Gy/fx)	Ulceration/fistula
Duodenum*	<5	18 (3.6 Gy/fz)	32 (6.4 Gy/fx)	Ulceration
Jejunum/ileum*	<5	19.5 (3.9 Gy/fs)	35 (7 Gy/fx)	enteritis/obstruction
Colon*	<20	25 (5 Gy/fid	38 (7.6 Gy/fx)	colitis/fistula
Rectum*	<20	25 (5 Gy/fa)	38 (7.6 Gy/fx)	proctitis/listula
Bladder wall	<15	18.3 (3.65 Gy/fx)	38 (7.6 Gy/fx)	cystitis/fistula
Penile bulb	<3	30 (6 Gy/fo)	50 (10 Gy/fx)	Impotence
Femoral heads (right and left)	<10	30 (6 Gy/fa)		Necrosis
Renal hilum/vascular trunk	<2/3 volume	23 (4.6 Gy/fz)		Malignant hypertension
Parallel Tissue Crit	ical Volume (n	D Critical Volu	me Dose Max (Gy)	Endpoint (≊Grade 3)
Lung (right and left)	1,500		(2.5 Gy/fx)	Basic lung function
Lung (right and left)	1000		(2.7 Gy/fx)	Pneumonitis
Liver	700		(4.2 Gy/fx)	Basic liver function Basic renal function
Renal cortex (right and left)	200	17.5	17.5 (3.5 Gy/fc)	
*Avoid circumferential irradiation.				

Dose Calculation Algorithms in Lung SBRT

Challenging Cases - 1

DF 🚳

Patient had 3D treatment for lung target 2 years ago and recurred. Prev Cord dose = 49 Gy, deliver minimum dose to cord Beam arranged to not enter thru cord, exit only Cord as OAR in optimization

Summary

LOYOLA UNIVERSITY HEALTH SYSTEM

0F 🚳

- Ensure adequate resources are available:
 - Imaging,
 - Txt Planning and
 - Delivery
- Acceptance Testing/Commissioning
- Robust System QA (End to End Test)
- IMRT/Arc Check QA

Summary

y LOYOLA UNIVERSITY HEALTH SYSTEM

- Checklists + Independent MU calc
- Follow RTOG Guidelines
- Establish site specific protocols consistent with departmental resources
 Automate Planning and Evaluation
- methods for efficient and consistent planning
- Follow AAPM/ASTRO/RTOG guidelines

Thank you!

LOYOLA UNIVERSITY HEALTH SYSTEM

Iris Rusu, MS Sebastien Gros, PhD B. Emami, MD E. Melian, MD M. Harkenrider, MD A. Solanki, MD