Erectile Dysfunction in Prostate RT

- In the United States, 2.36 million men have survived prostate cancer, and are currently living with cancer-effected life years.
- Erectile dysfunction (ED) is the most common complication of prostate RT.
- The etiology of erectile dysfunction is not clear. Several studies have reported that neurovascular bundle (NVB) injury is correlated with radiation-associated ED.
Imaging Technologies

- MRI – accurate target (e.g., dominant tumors, prostate, bladder, NVB, and rectum) delineation
- CT – accurate radiation dose calculation
- Ultrasound – quantitative tissue characterization and Doppler blood flow for treatment response

Multimodality Image Platform

1. MRI
2. 3D TRUS
3. MR-based NVB contours
4. MR-TRUS fusion
5. Integration of MR NVBs into TRUS

MRI-Ultrasound Registration – Flow Chart

1. TRUS-TRUS
2. MR-TRUS
3. Using elasticity map to guide MR-TRUS surface registration
Case Study

MRI

Axial

Coronal

Sagittal

MRI NVB MR-TRUS Fusion

Case Study (Doppler Ultrasound)

Multimodality Image Platform

PSV – Peak systolic velocity
EDV – End diastolic velocity
RI – Resistive index
Summary

• We have developed a novel approach to improve 3D NVB localization through MR-TRUS fusion for prostate RT, demonstrated its clinical feasibility, and validated its accuracy with ultrasound Doppler data.
• This technique could be a useful tool as we try to spare the NVB in prostate RT, monitor NBV response to RT, and potentially improve post-RT potency outcomes.

Breast Radiotherapy

Background

3 million are survivors of breast cancer and its treatment. Radiation-induced skin toxicity is the most common side effect of breast cancer radiotherapy impacting 70-100% of patients acutely and as many as 50% of patients in the long term:

<table>
<thead>
<tr>
<th>Acute</th>
<th>Chronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermatitis</td>
<td>Fibrosis</td>
</tr>
<tr>
<td>Erythema</td>
<td>Thickening</td>
</tr>
<tr>
<td>Desquamation</td>
<td>Hardening</td>
</tr>
<tr>
<td>Hyperpigmentation</td>
<td>Asymmetry</td>
</tr>
<tr>
<td></td>
<td>Disfigurment</td>
</tr>
<tr>
<td></td>
<td>Hypo or hyperpigmentation</td>
</tr>
<tr>
<td></td>
<td>Telangiectasias</td>
</tr>
</tbody>
</table>
Long-Term Treatment Side Effects

- Breast and skin thickening, fibrosis, poor cosmetic outcome
- Behavioral Morbidites:
 - Fatigue
 - Depression
 - Anxiety
 - Stress

We still cannot reliably predict who will develop short and long-term RT-induced breast and skin toxicity

Why?
- Poorly understood biology
- Lack of objective measures of skin toxicity

Ultrasound Tissue Characterization

- Dermal damage - Skin thickness
- Hypodermis damage assessment – Pearson correlation coefficient
- Glandular tissue – Midband fit
Skin effects – Irradiated vs. Normal Breast

Normal breast

Treated breast

Thickness: 1.9 mm

Thickness: 4.2 mm

Thickness: 3.3 mm

Thickness: 5.8 mm

Clinical Significance of Ultrasound Measurements in Women Treated with Standard XRT (50Gy + boost)

Grade 1 Acute Toxicity

Grade 3 Acute Toxicity

Ultrasound measurement vs. Clinical Assessment

Post-radiation breast-cancer patients

• Thickening of dermis post radiation therapy
• Lowering of Pearson Correlation Coefficient of the irradiated hypodermis
• Increased midband fit – fibrosis

<table>
<thead>
<tr>
<th>RT0G 0 (n=5)</th>
<th>RT0G 1 (n=9)</th>
<th>RT0G 2 (n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin thickness (mm)</td>
<td>38.4%</td>
<td>23.8%</td>
</tr>
<tr>
<td>Pearson coefficient</td>
<td>18.4%</td>
<td>35.0%</td>
</tr>
<tr>
<td>Midband fit</td>
<td>6%</td>
<td>138%</td>
</tr>
</tbody>
</table>
Research Questions

1. Where do breast cancer treatment-related side effects like fatigue and skin toxicity come from? (Inflammation)
2. How do treatment-induced toxicities persist? (Epigenetics)

Working Model and Hypotheses

1) Radiation-induced skin changes may activate the inflammatory response of the body

2) Inflammatory proteins are released that can enter the brain and cause fatigue and depression

Inflammation is the body's natural response to infection or wounding, but when prolonged or excessive can do damage to many parts of the body including the brain.
Skin Thickness Ratio and XRT

33% of patients returned to baseline or improved STRA at 1 year.

![Skin Thickness Ratio and XRT Graph](image)

Influence of Lymph Node Surgery on Acute STRA

![Influence of Lymph Node Surgery on Acute STRA Graph](image)

Torres et al. IJRBP 2015

Standard vs Hypofraction Breast RT

<table>
<thead>
<tr>
<th>Patient Characteristics</th>
<th>Standard RT (N=15)</th>
<th>Hypofractionated RT (N=15)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>61.1 ± 7.5</td>
<td>55.1 ± 11.2</td>
<td>0.09</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>20 (66.7%)</td>
<td>12 (80.0%)</td>
<td>0.72</td>
</tr>
<tr>
<td>African American</td>
<td>10 (33.3%)</td>
<td>8 (40.0%)</td>
<td></td>
</tr>
<tr>
<td>Chemotherapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>7 (23.3%)</td>
<td>10 (50.0%)</td>
<td>0.31</td>
</tr>
<tr>
<td>No</td>
<td>23 (76.7%)</td>
<td>10 (50.0%)</td>
<td></td>
</tr>
<tr>
<td>Tumor Stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 0</td>
<td>8 (26.7%)</td>
<td>5 (25.0%)</td>
<td></td>
</tr>
<tr>
<td>Stage I</td>
<td>13 (43.3%)</td>
<td>8 (40.0%)</td>
<td>0.75</td>
</tr>
<tr>
<td>Stage II</td>
<td>9 (30.0%)</td>
<td>7 (35.0%)</td>
<td></td>
</tr>
<tr>
<td>Treated Breast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left Breast</td>
<td>19 (63.3%)</td>
<td>11 (55.0%)</td>
<td>0.67</td>
</tr>
<tr>
<td>Right Breast</td>
<td>11 (36.7%)</td>
<td>9 (45.0%)</td>
<td></td>
</tr>
</tbody>
</table>
Longitudinal comparison of skin thickness ratio

<table>
<thead>
<tr>
<th></th>
<th>Prior to RT</th>
<th>During RT</th>
<th>1 month Post-RT</th>
<th>2 months Post-RT</th>
<th>1 year Post-RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control breast (mm)</td>
<td>1.99±0.38</td>
<td>2.03±0.37</td>
<td>1.93±0.38</td>
<td>1.91±0.24</td>
<td>1.87±0.30</td>
</tr>
<tr>
<td>Treated breast (mm)</td>
<td>2.37±0.29</td>
<td>2.81±0.46</td>
<td>3.01±0.70</td>
<td>3.11±0.72</td>
<td>2.52±0.56</td>
</tr>
<tr>
<td>Ratio (Treated/Control)</td>
<td>1.23</td>
<td>1.41</td>
<td>1.58</td>
<td>1.70</td>
<td>1.45</td>
</tr>
<tr>
<td>Hypofractionated Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control breast (mm)</td>
<td>2.35±0.42</td>
<td>2.43±0.40</td>
<td>2.35±0.38</td>
<td>2.30±0.34</td>
<td>2.24±0.28</td>
</tr>
<tr>
<td>Treated breast (mm)</td>
<td>2.91±0.71</td>
<td>3.13±0.92</td>
<td>3.16±0.89</td>
<td>3.20±0.71</td>
<td>2.91±0.69</td>
</tr>
<tr>
<td>Ratio (Treated/Control)</td>
<td>1.24</td>
<td>1.27</td>
<td>1.34</td>
<td>1.39</td>
<td>1.32</td>
</tr>
</tbody>
</table>

Short Course Whole Breast Radiation (Hypofractionation) and STRA

Conclusions

- Compared with standard breast RT, hypofractionated breast RT resulted in less skin toxicity during and post RT.
- There are complex patient, treatment, physician, and biologic factors associated with skin thickening following radiation treatment making this a difficult problem to study.
Implications and Future Directions

- Natural history data of RT-associated skin changes may inform decisions regarding appropriate timing of reconstruction in relationship to radiation
- Is there a relationship between skin thickening and breast asymmetry?
- Biological predictors of poor cosmetic outcomes following radiation are needed

Head-and Neck Radiotherapy

Gaussian mixture model analysis of radiation-induced parotid-gland injury

Purpose

- Xerostomia (dry mouth), secondary to parotid-gland injury, is a distressing side-effect in head-and-neck radiotherapy (RT). This study’s purpose is to develop a novel ultrasound technique to quantitatively evaluate post-RT parotid-gland injury.
- Recent ultrasound studies have shown that healthy parotid glands exhibit homogeneous echotexture, whereas post-RT parotid glands are often heterogeneous, with multiple hypoechoic (inflammation) or hyperechoic (fibrosis) regions. We propose to use a Gaussian mixture model to analyze the ultrasonic echo-histogram of the parotid glands.
Clinical Study

- All patients experienced RTOG grade 1 or 2 salivary-gland toxicity. (1) control-group: 13 healthy-volunteers, served as the control; (2) acute-toxicity group - 20 patients (mean age: 62.5 ± 8.9 years, follow-up: 2.0±0.8 months); and (3) late-toxicity group - 18 patients (mean age: 60.7 ± 7.3 years, follow-up: 20.1±10.4 months).
- Each participant underwent an ultrasound scan (10 MHz) of the bilateral parotid glands
- An echo-intensity histogram was derived for each parotid and a Gaussian mixture model was used to fit the histogram using expectation maximization (EM) algorithm. The quality of the fitting was evaluated with the R-squared value.

Case Study Result - Normal

Case Study Result - Acute
Results – Three Group

- **Normal Group**: 79.8 ± 4.9 (R-squared > 0.96).
- **Acute group**: 42.9 ± 7.4, 73.3 ± 12.2 (R-squared > 0.95).
- **Late group**: 49.7 ± 7.6, 77.2 ± 8.7, 118.6 ± 11.8 (R-squared > 0.98).

Results

- (1) Control-group: all parotid glands fitted well with one Gaussian component, with a mean intensity of 79.8 ± 4.9 (R-squared > 0.96).
- (2) Acute-toxicity group: 37 of the 40 post-RT parotid glands fitted well with two Gaussian components, with a mean intensity of 42.9 ± 7.4, 73.3 ± 12.2 (R-squared > 0.95).
- (3) Late-toxicity group: 32 of the 36 post-RT parotid glands fitted well with 3 Gaussian components, with mean intensities of 49.7 ± 7.6, 77.2 ± 8.7, and 118.6 ± 11.8 (R-squared > 0.98).
Implications and Future Directions

• This work has demonstrated that the Gaussian mixture model of the echo-histogram could quantify acute and late toxicity of the parotid glands.
• This study provides meaningful preliminary data from future observational and interventional clinical research.

Funding Sources

• NIH NCI
• NRG Oncology
• Department of Defense
• Susan G. Komen Foundation
• Winship Cancer Institute Pilot Funding
• Kennedy Pilot Grant,
• Cooper Family Breast Cancer Initiative
• Glenn Family Breast Center

Acknowledgements

• Our patients
• My lab: Xiaofeng Yang, PhD, Simone Henry, Haoyang Liu, PhD, Hao Chen, PhD, Jessie Li
• Radiation Oncology: Mylin Torres, MD, Peter Rossi, MD, Ashesh Jani, MD, David Yu, MD, PhD, Jonathon Beitler, MD, Jay Shelton, MD, Walter Curran, MD
• Radiology: Hui Mao, PhD, Srimi Tridandapani, MD
• Urology: Viraj Master, MD
• Hematology-Oncology: Omer Kucuk, MD
• Nursing: Deborah Bruner, PhD
• Biostatistics: Nelson Chen, PhD
Thank you!