Imaging Trials: ECOG-ACRIN

Paul Kinahan

University of Washington, Seattle, WA Co-Chair, ECOG-ACRIN Imaging Core Laboratory

Disclosures

- Research grant from GE Healthcare
- Co-Founder PET/X LLC

Acknowledgments

- Adam Opanowski
 - American College of Radiology, Philadelphia, PA
- Matthew P. Miller
 - Blue Earth Diagnostics Ltd, Oxford, United Kingdom
- Martin Lodge
- Johns Hopkins University
- NIH grants U01CA148131, U01CA190254, U10CA180820

Clinical Trial Imaging Endpoint Process Standards Guidance for Industry

DRAFT GUIDANCE

U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER)

March 2015 Clinical/Medical

Revision 1

FDA Draft Guidance (paraphrased)

- Images serve diagnostic purposes even though local methods may [sic] vary
- Variability in image acquisition & analysis may have no medical significance
- In a clinical trial, imaging variability may limit ability to meet trial objectives
- We recommend that some trials augment these existing standards to create trialspecific imaging process standards

Imaging data from NCI-sponsored clinical trials

- National Clinical Trials Network (NCTN)
- NCI Community Oncology Research Program (NCORP)

Imaging Science Advisory Committee (ISAC)

- 1. Determining if the proposed use of medical imaging in a clinical trial advances the mission of ECOG-ACRIN
- Should have the potential to reshape the future of patient care through clinical research, earlier disease detection, increased success of therapeutic interventions, greater rates of prevention, and better outcomes for patients
- 2. Ensuring appropriate use of medical imaging from ethical and technical/procedural standpoints
- 3. Reviewing imaging budgets
- · reasonable estimates for imaging costs and related components
- source of funding is identified
- Ensuring necessary prior reviews have occurred and that the PI had sufficient time to respond and satisfactorily address those reviews
- patient advocate
- originating scientific committee
- others as needed

EECOG ACRIN

CONCEPT Flow

ion September 27, 2013 ratified October 29, 2013

- Imaging Co-PI is involved in concept development
- 2. Assumes Imaging Co-PI takes advantage of EDDS team to flesh out imaging objectives
- 3. CONCEPT DEVELOPMENT-IMAGING form would be signed by the primary imaging collaborator
- IMAGING COMPONENT is defined as integral or integrated imaging, central archive, or central review, QC, or credentialing.
- Imaging Science Advisory Committee (ISAC) review
- Executive Review Committee (ERC) Imaging members review prior to formal ERC review.

PROTOCOL Flow

Qualification Utility for the Imaging Core Laboratory (QUIC)

- Web-based tool developed by ACR (American College of Radiology)
- Efficient means for qualification process and communicating with EA and ACR core lab
- Site personnel can
 - complete the online scanner qualification
 - upload images
 - track the review process
 - get information on a scanner's qualification expiration

QUIC - PET Trials

Welcome Back	d most			Home				
wer Menu ne	•	Nome as ToolTip (Focus on the CD or ID)						
lalities	•	Site Name	QualificationCD	ScannerCD	ModalityC	D*SiteID Status 1	tatusDate +	
mers	•	UNC Lineberger Comprehensive Cancer Center	3315-001-PTBO	3315-001	PTBO	03315 Submitted	07/27/2017	Details
rch Qualificati	ons +	Memorial Sloan Kettering Cancer Center	1757-010-PTBO	1757-010	PTBO	01757 Submitted	07/27/2017	Details
Account	•	Emory University/Winship Cancer Institute	3137-001-F151	3137-001	E151	03137 Submitted	07/20/2017	Details
	•	Oregon Health and Science University (DHSU)	10287-001-PTBR	10287-001	PTBR	10287 Submitted	07/19/2017	Details
tact Us	•	University of Kansas Cancer Center	3265-001-BN01	3265-001	BN01	03265 Submitted	07/19/2017	Details
r Guide	•	University of Michigan Comprehensive Cancer Center	3231-002-PTBO	3231-002	PTBO	03231 Submitted	07/11/2017	Details
		University of Michigan Comprehensive Cancer Center	3231-004-PTBO	3231-004	PTBO	03231 Submitted	06/29/2017	Details
		University of Texas Health Science Center at San Antonio	0351-002-F151	0351-002	E151	00351 Submitted	05/15/2017	Details
		Rhode Island Hospital	2484-000-F151	N/A	E151	02484 Submitted	04/20/2017	Details
		Hospital of The University of Pennsylvania	1176-009-DWBR	1176-009	DWBR	01176 Submitted	03/29/2017	Details
		Ohio State University Comprehensive Cancer Center	2098-003-BN01	2098-003	5N01	02098 Submitted	07/26/2016	Details
		Decatur Memorial Hospital	0616-002-MRBD	0616-002	MRBO	00616 Submitted	07/07/2016	Details
		Saint Luke's Hospital of Kanses City	2967-001-PTBO	2967-001	PTBO	02967 Submitted	05/20/2015	Details
		Rest Previous Next Last Displaying 1 to 13 (of 13	Records)					

QUIC – PET Trials

NCI Molecular Analysis for Therapy Choice (MATCH) Trial EAY131

- Analyzes patients' tumors to determine for genetic abnormalities using a 'basket' or 'umbrella' approach
- Is there a targeted drug (i.e. an 'actionable mutation')?
- Assigns treatment based on the abnormality
- Each treatment is used in a unique arm
- trial opened Aug 2015 with 10 arms
- reopened May 2016 with 24 treatment arms
- · Each arm expected to enroll a max of 35 patients
- Eligibility: solid tumors and lymphomas not responding to standard therapy

NCI-MATCH Patients and Sites

- · 795 patients enrolled for screening in the first 3 months
- Far surpassing original estimate of 50/month
- Plan to enroll 5,000 patients

- 192 active sites (at least 1 patient)
 2/3 community
 1/3 academic
- 796 approved sites

MATCH Trial Flow

*data as of 21-Sept-2016

¹⁸F-Fluciclovine PET/CT in Patients With Rising PSA After Initial Prostate Cancer Treatment (LOCATE)

- LOCATE is a multi-center trial assessing impact of ¹⁸F-fluciclovine PET imaging in patients with rising PSA after initial prostate cancer treatment
- The utility of ¹⁸F fluciclovine PET/CT imaging is assessed by changes in treatment plan
- In May 2017, the study completed enrolment. More info at www.clinicaltrials.gov (NCT02680041)
- ¹⁸F-fluciclovine image interpretation is *primarily* qualitative, with increased uptake suspicious for prostate cancer recurrence
- We were able to add reconstructions with and without PSF to the LOCATE study to evaluate the impact

Including a model of the non-stationary detector point-spread-function (PSF) in image reconstruction

Tong IEEE TNS 2011

QIBA Profile precludes PSF-based reconstruction in measuring SUV

Claim 1: SUVmax is measurable from FDG-PET/CT with a within-subject coefficient of variation of 10-12%

Claim 2: A measured increase in SUVmax of 39% or more, or a decrease of -28% or more, indicates that a true change has occurred with 95% confidence

"... we note that this Claim shQuantitative assessed for technology chan Biomarkers (point spread function) based

Courtesy of Dr. Martin Lodge, Johns Hopkins University

Process for Site qualification and Patient images

Qualification

- 18F Water-filled Uniform Phantom
- ACR PET Phantom
- + many other details...

Image Reconstruction

• Time of Flight (TOF) reconstruction should be used

Required to submit without PSF

- PSF reconstructions should NOT be used for phantom images or patient interpretation
- However, sites were requested to provide PSF reconstructions of patient scans if they could

Sites / scanners

Adler Institute Cedars Sinai City of Hope Fox Chase Genesis Huntsman	PCMI Sand Lake Thomas Jeffe U Florida U Louisville U Penn	ersor	Lenox Hill Liberty Pacific Loyola Mount Sinai Indianapolis VA Wash U		> 18 sites
Siemens Biograph Siemens Biograph Siemens Biograph Siemens Biograph Siemens Biograph	40 mCT 20 mCT	2 5 1 1 2	GE Discovery IQ GE Discovery ST GE Discovery STE GE Discovery 710 Philips Ingenuity TF	1 1 3 2 2	20 scanners

Results

- 7 sites (9 scanners) performed PSF-based reconstructions
- 209 total subjects accrued

20 cm diameter Phantom

Example from qualification submissions for same scanner

Time of flight without PSF (TOF)

Time of flight with PSF (TOF+PSF)

ACR Phantom

Examples from qualification submissions for same scanner

СТ

PET without PSF

PET with PSF

Patient image 1/2

TOF SUV Max: 10.3 SUV Mean: 7.8 SD: 1.8

TOF+PSF SUV Max: 13.1 SUV Mean: 10.5 SD: 2.6

Patient image 2/2

TOF

SUV Max: 11.1 SUV Mean: 4.6 SD: 1.9

TOF+PSF SUV Max: 15.6 SUV Mean: 4.8 SD: 3.0

Locate Trial Summary

- Including a model of the PSF in image reconstruction is an appealing approach to improve resolution
- However, PSF causes bias and variance in SUVs
- This will increasingly be a challenge for clinical trials and clinical studies using SUVs
- Roughly 40% of studies could be collected with and without PSF-based reconstruction
- The LOCATE study showed that with careful trial planning, images could be collected without PSF
- Checking all images/headers for PSF is necessary

Imaging Core Lab Summary

Complex environment with multiple constraints

- cost

- patience & engagement by imaging sites: technologists, physicians, local physicists (if any)
- Many potential roles for medical physicists
 - non-standard of care protocols
 - trial design
 - qualification process
 - execution of the trial

Phantom measurements of ringing artifact

Bai, 2010 IEEE MIC conf record