



#### Ultrasound Microbubble Applications in Radiotherapy

#### John Eisenbrey, PhD

Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA

#### Disclosures

- Research funding, contrast agent and equipment support from GE
- Contrast agent support for Lantheus Medical Imaging.
- Research funding from GlaxoSmithKline
- Equipment loan from Toshiba
- Equipment loan from Siemens

#### **Ultrasound Contrast Agents**

- Gas filled 1 to 8 µm bubbles
- · Injected intravenously and transpulmonary
- · Generally contain higher molecular weight gasses
- Bubbles are encapsulated:
   Albumin or polymer shell
   Lipid or surfactant coated
  - Lipid or surfactant coated for longevity
- Signals mainly from vessels 20 40 µm
  FDA approved for cardiac and liver imaging



#### Contrast-Enhanced Ultrasound for Treatment Response of HCC



HCV Male with 9.2cm HCC 2 weeks post lipiodol chemoembolization



## Microbubble applications in radiotherapy

- Microbubble cavitation for sensitizing HCC tumors to radiotherapy
- Microbubble-assisted oxygen delivery for overcoming tumor hypoxia

## Inertial microbubble cavitation results in reduced tumor vascularity



Wood AKW, Ansaloni S, Ziemer LS, Lee WM-F, Feldman MD, Sehgal CM. THE ANTIVASCULAR ACTION OF PHYSIOTHERAPY ULTRASOUND ON MURINE TUMORS Ultrasound in medicine & biology. 2005;31(10):1403-1410.

## Inertial cavitation initiated vascular disruption leads to radiosensitivity



#### Hypothesis:

• Noninvasive microbubble cavitation can be used to sensitize hepatocellular carcinoma prior to radiotherapy, without compromising liver function.

#### **HCC** Animal Studies

- Human HCC cell line implanted into liver of aythymic nude rats (n=18).
- Tumor growth monitored with 2D ultrasound until maximum tumor diameter > 5 mm.
- Rats randomized into groups receiving: microbubble cavitation alone (0.1ml Optison, GE Healthcare); radiation alone (5 Gy single fraction); or microbubble cavitation 3-4 hours prior to radiotherapy.
- Ultrasound was performed using an S3000 scanner with 9L4 probe and flash-replenishment and a nonlinear imaging package (MI = 1.13 at 4.0 MHz, transmitting 2.3 µs pulses at a pulse repetition frequency of 100 Hz; Siemens Healthineers, Mountain View, CA).
- Imaging plane was maintained at tumor midline for 4 destructive pulses before being swept through the tumor for the remainder of contrast enhancement (approximately 10 pulses).

### **HCC Animal Studies**

- Immediately following UTMD, tumors were marked via placement of a 25G metal tip under ultrasound guidance.
- Approximately 3 hours following UTMD, animals in radiation groups received 5 Gy delivery using 3D conformal radiotherapy guided with cone beam CT guidance (Xstrahl, Camberley, United Kingdom).
- Changes in weight and animal distress were monitored and compared between groups.
- Tail vein blood was collected prior to tumor inoculation, immediately prior to therapy, and 2 days and 1 week post treatment to assess liver function.
- Tumor volumes were measured 2 times per week using 3D imaging on a Vevo2100 with 32MHz probe (VisualSonics, Toronto, Canada).
- Animal survival was monitored and compared between groups (animals sacrificed at 20% weight loss or tumors >1.5 cm based on IACUC conditions).



#### Microbubble Cavitation

#### HCC Tumor Marking



# Radiation Therapy- Small Animal Radiation Research Platform



#### HCC Tumoral Response





- A 49% reduction in tumor growth rate was observed when radiotherapy was combined with UTMD (top left figure).
- A 56% improvement in survival time was observed when radiotherapy was combined with UTMD (p=0.034).
- No differences in liver function (ALT and bilirubin) were observed between groups receiving radiotherapy (p>0.31).

6

#### HCC Cavitation Conclusions:

- Microbubble-based antivascular therapy appears safe prior to radiotherapy of HCC, with no detected changes in liver function tests.
- Ultrasound triggered microbubble destruction prior to external beam radiation therapy appears to sensitize tumors to treatment, improving tumoral response and survival in an animal model.
- Future work will explore the use of UTMD in patients undergoing catheter-based Y90 radioembolization for unresectable HCC.

#### Microbubble Cavitation for Improving HCC Radioembolization



HCV Female Patient Scheduled for Y90 Radioembolization of 3cm HCC In Right Lobe

#### Microbubble Cavitation for Improving HCC Radioembolization



#### Microbubble Cavitation for Improving HCC Radioembolization



#### Microbubble Cavitation for Improving HCC Radioembolization



## Microbubble applications in radiotherapy

- Microbubble cavitation for sensitizing HCC tumors to radiotherapy
- Microbubble-assisted oxygen delivery for overcoming tumor hypoxia

#### Background: Tumor Hypoxia

- Angiogenesis in tumors falls short of cellular oxygen demand, resulting in a chronically hypoxic microenvironment.
- Studies have shown this deficit results in cellular resistance to irradiation, which limits the efficacy of radiation therapy.
- A relatively small increase in oxygen partial pressure (pO<sub>2</sub>) in hypoxic cells can result in significant sensitization to radiation therapy and this can occur almost instantaneously.
- Approaches using systemic delivery of oxygen immediately prior or during radiotherapy have not translated to clinical usage, primarily due to the body's natural tendency to regulate oxygen.
- Current research is now focused on <u>localized</u> deliver of oxygen for improving radio-sensitivity.

Ultrasound sensitive oxygen-filled microbubbles may be a local, noninvasive, and effective method for overcoming hypoxia-associated radio-resistance

#### Tumor Hypoxia - Oxygen Delivery



Relationship between relative radiosensitivity and oxygen partial pressure, demonstrating that a relatively small increase in anaerobic tumors can substantially increase sensitivity. Reprinted from [Rockwell 1989].

#### SE61 Microbubble Fabrication

- Span 60 and water soluble Vitamin E (Tocopheryl α\*Polyethylene glycol succinate) are autoclaved before being dispersed in solution.
- The mixture is then purged with octoflouropropane before and during sonication, resulting in microbubble foam.
- The foam is then separated from unincorporated surfactant and repeatedly washed and selected for appropriate size using floatation methods.
- Afterward fabrication these agents can be freeze dried using glucose as a lyoprotectant and their cores reinflated by venting with the desired gas (Oxygen, Nitrogen, etc).



- Polydispersity index of 0.89 ± 0.18
   Particle counting by flow cytometry show
- Particle counting by flow cytometry showed approximately  $6.5 \pm 0.8 \times 10^7$  microbubbles / ml









#### SE61<sub>02</sub> Oxygen Delivery in vitro

- Oxygen release kinetics were measured using an Oxy Lite 2000 with bare fiber pO<sub>2</sub> probe (Oxford Optronix, Oxford, United Kingdom).
- Two milliliters of reconstituted agent was added to 100 ml of degassed saline.
- Samples were triggered with ultrasound over 20 minutes with readings obtained every 30 seconds.
- All pO<sub>2</sub> values were normalized to baseline levels and expressed as change in mmHg.





### SE61<sub>02</sub> Oxygen Delivery in vivo

- In vivo oxygenation experiments performed in 8 mice with MDA-MB-231 breast tumor xenografts.
- The bare fiber pO<sub>2</sub> probe was introduced into the tumor via a 21G percutaneous catheter.
- Each animal received a 0.1 ml intravenous injection of SE61<sub>02</sub> followed by 0.05 ml saline flush during flash-replenishment sequences using an S3000 scanner with a 9L4 probe generating 4 second flash pulses (MI=1.35) with 1 second replenishments (Siemens, Mountain View, CA)
- As controls, release profiles were compared to untriggered SE61<sub>02</sub>, and triggered SE61<sub>N2</sub>.



#### SE61<sub>02</sub> Oxygen Delivery in vivo



## SE61<sub>02</sub> Oxygen Delivery in vivo

- No changes in  $pO_2$  levels were detected after the injection  $SE61_{O2}$  without ultrasound (largest change <  $0.5\ mmHg)$  or  $SE61_{N2}$  with ultrasound largest change < 3.8 mmHg).
- In tumors treated with SE61<sub>02</sub> with ultrasound, pO<sub>2</sub> levels increased in all animals with a peak increase of 22.9 ± 6.4 mmHg.
- Increases in pO<sub>2</sub> levels occurred within 10 seconds and lasted at least 2 minutes in all animals with peak oxygenation achieved 75 ± 28.9 seconds post injection.





# Tumor Hypoxia - Oxygen Delivery

Relationship between relative radiosensitivity and oxygen partial pressure, demonstrating that a relatively small increase in anaerobic tumors can substantially increase sensitivity. Reprinted from [Rockwell 1989].



#### Tumor Hypoxia - Oxygen Delivery



SE61<sub>02</sub> Tumor Radiotherapy Tumor Sensitization

- Radiation therapy experiments underway in 63 mice with MDA-MB-231 breast tumor xenoorafts
- xenografts. Animals receive combinations of SE61o<sub>2</sub>, SE61<sub>N2</sub>, and 75 seconds of ultrasound with or without 5 Gy external beam radiation. Tumors growth and survival monitored between groups.

| Experimental Design of In Vivo Study |                      |             |            |  |  |
|--------------------------------------|----------------------|-------------|------------|--|--|
| Group                                | Radiation<br>Therapy | Microbubble | Ultrasound |  |  |
| 1                                    | 5 Gy                 | Oxygen      | Yes        |  |  |
| 2                                    | 5 Gy                 | Oxygen      | No         |  |  |
| 3                                    | 0 Gy                 | Oxygen      | Yes        |  |  |
| 4                                    | 5 Gy                 | Nitrogen    | Yes        |  |  |
| 5                                    | 5 Gy                 | None        | Yes        |  |  |







SE61<sub>02</sub> Tumor Radiotherapy Tumor Sensitization



### SE61<sub>02</sub> Conclusions

- A stable, surfactant shelled, oxygen microbubble has been fabricated.
- Acoustic triggering of the SE61<sub>O2</sub> bubbles elevates pO<sub>2</sub> levels within 10 seconds and lasted at least 2 minutes with a peak increase of 22.9 mmHg after 75 seconds post injection.
- In vivo results indicate ultrasound-triggered oxygen delivery successfully sensitizes breast tumors to radiation therapy, improving both tumor response and survival.

#### Acknowledgements

Funding, Equipment and Contrast Support NIH R21 CA190926 Siemens Medical Solutions GE Healthcare (Princeton, NJ)

<u>Thomas Jefferson University</u> Rawan Shraim, Radiology Annemarie Daecher, Radiology Ji-Bin Liu, Radiology Maria Stanczak, Radiology Flemming Forsberg, Radiology Dennis Leeper, Radiation Oncology Shisuo Du, Radiation Oncology Jan Hoek, Pathology, Anatomy and Cell Biology

Drexel University Margaret Wheatley, Biomedical Engineering Brian Oeffinger, Biomedical Engineering

## Thank You!

