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patients are encountered 
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Clinical Failure Rates:
Obstetrics4-7 11-64%
Cardiac TTE1-3 9-64%

TTE inadequate8 98.4%

…Typically quality is more 
mediocre. 
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in outcome?



Sources of Image Degradation

• Pressure wave attenuation [1] 
• Diffraction-limitations [2,3] 
• Multiple scattering or reverberation (sometimes considered 

distinct) [2, 4, 5], 
• Gross sound-speed deviation[6]
• Sound speed and attenuation inhomogeneities [7–13] 
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What about resolution?
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Contrast

Linear Contrast Simulations (“All Pass Case”)
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+5.5 dB +6.6 dB +14.2 dBΔContrast
ΔContrast +7.2 dB +16.3 dB +22.8 dB



ADMIRE Image Quality

Contrast Contrast-to-Noise 
Ratio

Improvement:
7.1±2.5 dB 0.86±0.92 dB



Second Harmonic Imaging
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Harmonic Imaging

Lasso(L1)Normal E. Net (α=0.5) E. Net + IM



Harmonic ADMIRE Image Quality

Contrast Contrast-to-Noise 
Ratio

Improvement:
6.9±3.5 dBADMIRE 0.97±1.53 dB
Contrast CNR



Limitations of ADMIRE and 
other similar model-based 

strategies



Dynamic Range Limitations

Arbitrarily high contrast 
for anechoic cysts

Contrast Transfer Function
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Regularization Schemes Fails at High Dynamic Ranges

B-Mode ADMIRE
Some kind of constraint is 
required for the model fit, 
but the constraint limits 
the dynamic range

Bright scattering from 
pericardium and lung

Relatively muted 
scattering from 
myocardium



Future Work--High Dynamic Range Imaging
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Conculsion

ΔContrast +22.8 dB

Normal ADMIRE
Model-based ultrasound image 
formation approaches offer 
many potential benefits

Evaluation of Model-based 
methods is easily gamed

Careful consideration of tuning 
can lead to improvements over 
DAS with few downslides

DAS

ADMIRE

HDR-ADMIRE
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