

Implementing a Clinical Practice Guideline; Lessons From An Early Adopter of MPPG 5.a

Dustin Jacqmin, PhD Assistant Professor, Human Oncology University of Wisconsin Madison

Disclosures

None

Outline

- 1. General experience with the implementation of MPPG 5.a
- 2. Benefits of implementation
- 3. Difficulties encountered during implementation
- 4. Development of organization and analysis tools
- 5. Availability of tools to the physics community

WISCONSIN

A Quick Show of Hands

- How many of you are familiar with Medical Physics Practice Guidelines?
- · How many of you have put one into practice in your clinic?

What is MPPG 5.a?

- MPPG 5.a seeks to provide guidance on commissioning and validation of radiotherapy dose calculations for photons and electrons
 - 1. Identify applicable AAPM reports and published literature
 - 2. Provide updated guidance on technologies that are newer
 - 3. Provide guidance on validation tests for dosimetric accuracy
 - 4. Provide guidance on tolerance values and evaluation criteria for clinical acceptability
 - 5. Provide a checklist for commissioning

So you've downloaded MPPG 5.a...

Now what?

What is MPPG 5.a asking of me?

- Read it to identify all of the things I need to do:
 - Sections 1-4: Guidance on the beam data acquisition and modeling process
 - · Sections 5-8: Guidance on beam model validation
 - Sections 9-10: Wrapping it up

What tools do I need?

MPPG 5.a Section	Test Number	Test Description	Measurement Equipment	-
	5.1	Physics module versus planning module	None	
5. Photon Beams:	5.2	Clinical calibration geometry dose	Scanning water tank; Farmer- type ionization chambers	
Basic Dose Algorithm	5.3	Planning module dose versus commissioning data	Scanning water tank; scanning ionization chambers	1
Validation	5.4-5.8	Basic photon beam tests	Scanning water tank; scanning ionization chambers	-Water Tank
	5.9	Non-physical wedge test	MapCHECK2	QA Devices
6. Photon Beams: Heterogeneity	6.1	CT-value-to-density calibration	Electron density phantom	-Heterogeneous Phantom
Correction Validation	6.2	Heterogeneity correction	Custom phantom; ionization chamber	
	7.1	Small field PDD	Scanning water tank; scanning ionization chambers; diode detector	-Water Tank
7. Photon Beams: IMRT/VMAT	7.2	Output for small MLC- defined fields	Scanning water tank; diode detector	7
Dose Validation	7.3-7.4	TG-119 and clinical tests	Delta4; MapCHECK2	QA Devices
	7.5	External review	Radiochromic film; OSLDs	Heterogeneous Phantom
8. Electron Dose	8.1-8.2	Basic electron fields and obliquity tests	Scanning water tank; scanning ionization chambers	Water Tank
Validation	8.3	Electron heterogeneity correction	Custom phantom; ionization chamber	Heterogeneous Phantom

1. Gathering the Phantoms

2. Calculating Treatment Plans

3. Making Measurements

4. Comparing Measured and Calculated Dose

5. Is my model good enough yet?

MPPG 5.a proposes a set of **minimum tolerances** and **evaluation criteria** for each test

- Minimum Tolerances
 - Widely accepted tolerances based on published guidelines, IROC dosimetry audits, and other published results
 - Considered a minimum standard, not a recommended stopping point for model improvement
- Evaluation Criteria
 - Given where no widely accepted tolerances are available
 - Designed to emphasize areas of disagreement and highlight opportunities for further investigation and improvement

5. Is my model good enough yet?

5	6
Minimum Tolerances	Minimum Tolerances
Reference calibration geometry (0.5%) High dose (2% local) Penumbra (3 mm) Low-dose tail (3% global)	Dose above and below heterogeneity in regions of CPE (3% local on CAX)
7	8
Minimum Tolerances & Evaluation Criteria	Minimum Tolerances
Ion chamber in Iow-gradient target (2% of Rx) Ion chamber in OAR region (3% of Rx) Film or array-based IMRT/VMAT OA (2%/2mm) End-to-end test (5%)	High-dose/low-gradient regions in water (3%) PDDs in water (3%/3mm) Oblique incidence in water (5% on CAX) Heterogeneity correction (7% on CAX)

Application of Minimum Tolerances

Application of Evaluation Criteria

Why Recommend 2%/2mm?

- A stricter evaluation criteria can:
 - · Identify easily correctable modeling errors
 - · Highlight weaknesses in a dose calculation algorithm
 - · Are more sensitive to changes in beam model parameters

Overall Experience

- MPPG 5.a is a do-able, well-organized approach to dose calculation validation
- Dose calculation algorithms in Pinnacle, Eclipse and Mobius3D are capable of meeting the tolerances specified in MPPG 5.a for both Elekta and Varian linacs
- Total time commitment is ~79 hours
 - 26 hours involve time on the machine and the remainder is preparation and analysis
 - Approximately half of the time involves preparing, measuring and analyzing IMRT and VMAT plans

Benefits of MPPG 5.a

- The dataset needs to be measured once per machine, but the analysis can be repeated again and again on new dose calculation algorithms.
- 2. The wide variety of tests in MPPG 5.a can probe your model and finds real weaknesses.
- 3. The built-in end-to-end testing verifies the full clinical workflow.

WISCONSIN

Versatility of the Validation Dataset

- Medical University of South Carolina
 - Eclipse TPS commissioning for two TrueBeams
 - Mobius3D commissioning for two TrueBeams
 - Eclipse TPS upgrade
 - Beloit Memorial Hospital
 - Pinnacle TPS upgrade
 - Mobius3D commissioning for Elekta Infinity
 - University of Wisconsin Hospital
 - Pinnacle TPS commissioning for one TrueBeam

Versatility of the Validation Dataset

- The MPPG 5.a validation data will come to define your treatment unit:
 - Define the scope of future model validation, saving you the overhead of planning what to test
 - Serves as a benchmark for comparing different algorithms
 - A model that agrees well with this data is clinically acceptable

Finding Real Weaknesses

- · Every model has its weak points:
 - Eclipse Acruos struggles with out-of-field dose, particularly at deeper depths

WISCONSIN

Finding Real Weaknesses

- · Every model has its weak points:
 - Older versions of Mobius3D did not have a leaf-offset table

Finding Real Weaknesses

- · Every model has its weak points:
 - Pinnacle's "Electron 3D" model is difficult to tune over a full range of profile depths

Built-in End-to-end Testing

- Every step of the planning and delivery process is tested by MPPG 5.a
 - · Simulation and image import
 - Beam generation and dose calculation
 - Export to OIS
 - · Generation and measurement of QA plans
 - Image guidance and treatment

Difficulties with MPPG 5.a

- Difficulties encountered during MPPG 5.a
 - · Deciding how difficult to make a test
 - Applying tolerances and evaluation criteria
 - Basic electron output check test is missing
 - Order of the testing is somewhat confusing

Difficulties with MPPG 5.a

· Deciding how difficult to make a test

-
11111
—— <u> </u>

Difficulties with MPPG 5.a

Difficulties with MPPG 5.a

Basic electron output check test is missing

							nade 9.8				
			TPS Data		000	WU at Dra	lax.		rcent Depth Dose at Referen	ce Depth	
inegy.	Ref. Depth	MU	Ref. Date [cGy]	Gy (10 cm)	Doce/MU (REF)	N DIT.	Within 0.5N7	PDD12(Kclipte)	PDD 52 (Commissioning)	NOR	Within 0.5%?
6x.	1.4	\$00	4.99	3.312	0.998	-0.20%	Yes	65.2%		-0.24%	
6x.FFF	13	500	5.012	2,562	1.002	0.24%	Yes	63.3%	63.5%	-0.38%	Yes
10x	2.3	500	5.01	2.668	1.002	0.20%	Yes	73.4%		-0.19%	
10x5F5	2.2	\$00	4.983	3.545	0.997	-0.34%	Yes	70.9%	71.1%	-0.28%	Yes
154	2.7	500	4,999	2,821	1.000	-0.02%	Yes	75.6%	76.7%	-0.10%	Yes

Difficulties with MPPG 5.a

Order of testing is somewhat confusing

Development of Organization and Analysis Tools for MPPG 5.a

- Automated Profile Comparison Tool
 - Overview
 - Measured Data
 - Dose Calculation Data
 - Analysis Options
 - Analysis Summary
- DICOM Renamer
- Organizational Spreadsheet

WISCONSIN

The Profile Comparison Tool

- The MPPG #5 Profile Comparison Tool (PCT) is a simple but powerful profile comparison tool designed to be used during the commissioning and QA of external beam treatment planning systems.
- The program accepts profile data from scanning water tank systems and DICOM-RT DOSE files from commercial treatment planning system, co-registers the data sets, and performs a 1D gamma analysis on the profiles.
- The user may specify a number of analysis and export settings.

Overview

			1			
Get Measured Dose File				Get Ca	lculated	Dose File
Measurement File	: P06_0p	en_10x10_TB.AS	C			
Measurement Sta	itus: 5 inli	ne, 5 crossline, 1 e	depth-d	lose, and 0 other pro	ofiles	
DICOM-RT DOS	E File: RT	DOSE_6xAAA_2	-25^3_	10x10.dcm		
		not found. Offset	entered	the DICOM-RT PL manually by the us		Ealt DICOM Offset
Depth-Dose Normalizat	ion Optiona:			Normalization Options		
Normalize Depth Dose Profile To:	0 D _m	ax Depth (Y)		nalize Inline and sline Profiles To:	$\odot{\rm D}_{\rm max}$	Position (X,Z)
Depth (Y) =	10.0	cm	Cro	ssline (X) = 0.0	cm Inlin	e (Z) = 0.0 cm
Gamma Analysis Optio	16				0.	Iput Options:
Dose Diff. (%):	2	DTA (mm):	2	Vse Thresho	id?	Create CSV File
Dose Analysis:	• Glo	bal 🔾 Loca	1 - E	10.0 9	50 10	Create PDF
			-	ın		

Measured Data

- · Accepts exported data from scanning software:
 - W2CAD (Eclipse TPS import)
 - OmniPro ASCII
- PCT automatically determines profile type

Get Mea	sured Dose File	Get Calculated Dose File
Measurement File: P	06_Open_10x10_TB.ASC	

Dose Calculation Data

- Accepts exported DICOM-RT DOSE files from TPS
 - Available from all commercially available TPS
 - PCT automatically extracts the PDDs and profiles from 3D dose distribution

	Wisconsin				
Co-registratior	of Datasets				
 PCT can automatically co-reg the measured and calculated 					
MPPG Profile Compa	arison Tool V2.3				
Get Measured Dose File	Get Calculated Dose File				
Measurement File: P06_Open_10x10_TB.ASC	a and 0 attest section				
Measurement Status: 5 inline, 5 crossline, 1 depth-dose, and 0 other profiles DICOM-RT DOSE File: RTDOSE 6xAAA 2-25 ⁴ 3.10x10.dom					
DICOM Status: DICOM PT DDSE is from Varian Med was found. A POI called "ORIGIN" was not found in th DICOM-RT STRUCT was not found. Offset entered m	ical Systems. Accompanying DICOM-RT PLAN e DICOM-RT PLAN. Accompanying				
DICOM Offset: (0.000	29.940, 0.000) East DICOM Offset				

W wisconsin

Analysis Options

- Normalization options for PDD and profiles
- Gamma analysis options
 - Dose difference, DTA and global/local comparisons

Normalize Depth Dose Profile To: Drmax (Depth (Y)			Nor Cro	Normalize Inline and Crossline Profiles To:			O D _{max}			
Depth (Y) =	10.0 C	m	Cro	ssline (X) =	0.0	cm	Inline (Z) =	0.0 cm		
Samma Analysis Optio	16						Output Optio	16.		
Dose Diff. (%):	2 DTA (mm):		2	2 Vse Thresho			old? Create CSV File			
Dose Analysis:	Global Local		al	10.0		%	Creat	Create PDF		
			-	un						

Analysis Summary

- PDF of PDDs and profiles
- Summary Spreadsheet

Measurement Filename	Calculated Filename	Axi	Depth	Max Gamma	Average Gamma	Std Dev Gamma	Passing Rate (%)
MPPG_5.5_10xFFF_CC04_PDD_Profile s.ASC	RTDOSE_5.5 TB140 AAA_5.5- 10xFFF.dom	z		11.441059	0.080202	0.600987	99.225806
MPPG_5.5_10xFFF_CC04_PDD_Profile s.ASC	RTDOSE_5.5 TB140 AAA_5.5- 10xFFF.dom	х	2.2	0.722118	0.285596	0.142493	100
MPPG_5.5_10xFFF_CC04_PDD_Profile s.ASC	RTDOSE_5.5 TB140 AAA_5.5- 10xFFF.dom	х	10	0.654576	0.22734	0.123505	100
MPPG_5.5_10xFFF_CC04_PDD_Profile s.ASC	RTDOSE_5.5 TB140 AAA_5.5- 10xFFF.dom	х	30	0.824168	0.201455	0.150919	100
MPPG_5.5_10xFFF_CC04_PDD_Profile s.ASC	RTDOSE_5.5 TB140 AAA_5.5- 10xFFF.dom	γ	10	0.64197	0.229955	0.118242	100

Analysis Summary

DICOM-RT File Renaming Tool

 Automatically identifies and renames DICOM-RT plan, dose and structure set files that are from the same plan

Select a director		OM files to be ren	amed:				
Select Directory Wirhweithynesco CS-ESATORINArian. (10:14)_W148PP0-5 TestingErlipseAW65.5 Large Bioched Shape Directory contains 0 RTSTRUCT, 1 RTPLWI and 4 RTD05E				🗐 Name	*	Date modified	Туря
				RTDOSE_5	.5 TB140 AAA_5.5-6x.dcm	1/5/2015 11:06 AM 1/5/2015 11:06 AM 1/5/2015 11:06 AM	DCM File DCM File DCM File
				RTDOSE_5	5 TB140 AAA_5.5-6xFFF.dcm		
				RTDOSE_5	.5 TB140 AAA_5.5-10:FFF.dc		
Last Name	Include These In Filename Basin Name Basin Type Gardry Ande			RTDOSE_5	.5 TB140 AAA_5.5-1fir.dcm	1/5/2015 11:07 AM	DCM File
First Name	V Han Harte Machine Name Dears Name	Elearn Type Radiation Type Dearn Energy	Gantry Angle Beam Modifier Hes MJC?	RTPLAN_5	5 TB140 AAA.dcm	1/5/2015 11:06 AM	DCM File
Rename Files							

Organizational Spreadsheet

wisconsin

Availability of Tools to the Physics Community

GitHub (most up-to-date)

<u>https://github.com/Open-Source-Medical-Devices/MPPG</u>

Dustin Jacqmin

jacqmin@humonc.wisc.edu

Questions?

Dustin Jacqmin • jacqmin@humonc.wisc.edu