Treatment Planning & IGRT Credentialing for NRG SBRT Trials

Hania Al-Hallaq, Ph.D.

Department of Radiation & Cellular Oncology

The University of Chicago

Learning Objectives

- Explain rationale behind credentialing requirements for NRG SBRT trials
- Describe credentialing for NRG SBRT trials
 - Phantom Irradiation
 - Benchmark planning
 - IGRT
- Provide hints to expedite process at your institution

PI: Steven Chmura, M.D., Ph.D. **Medical Physics Co-Chairs:** Hania Al-Hallaq, Ph.D. Martha Matuszak, Ph.D.

Advancing Research. Improving Lives.

NRG-BR002:

A Phase II/III Trial of SBRT and/or Surgical **Ablation for Newly Oligometastatic Breast Cancer**

> PI: Steven Chmura, M.D., Ph.D. **Medical Physics Co-Chairs:** Hania Al-Hallaq, Ph.D. Martha Matuszak, Ph.D.

Advancing Research. Improving Lives.14

Planning Challenges for Multiple Targets

- Multiple PTVs in proximity and overlapping with organs-at-risk (OARs):
 - Planning priorities
 - Dose conformity
 - 3D vs. IMRT/VMAT
 - Single vs. multiple isocenters
- Positioning & organ reproducibility
 - Motion management including PTV margins
 - Appropriate IGRT modality
 - Single vs. multiple isocenters

NRG BR001 & BR002: Rationale for Credentialing Requirements

- How to be lenient enough to credential for 7 anatomical sites without the burden of repeating credentialing for each site?
- Credentialing tied to task being tested:
 - Single versus multiple isocenter
 - With or without motion management
 - IGRT for lesions in soft-tissue versus bony anatomy
 Special Article

Rationale of technical requirements for NRG-BR001: The first NCI-sponsored trial of SBRT for the treatment of multiple metastases

Al-Hallaq et al, PRO, Dec 2016.

1. Phantom Irradiation

Phantom Irradiation

- To minimize credentialing burden:
 - Either liver or lung phantom
 - Irradiate only with most complex modality (3D → IMRT → VMAT)
 - Techniques can be combined (e.g., FFF beam + motion management)
- *Caveat*: To treat multiple lesions with a single isocenter, must irradiate a 2 target phantom

2. Benchmark Planning

BR001 Benchmark Case: Bilateral Adrenal Metastases

BR001 Benchmark Case: Bilateral Adrenal Metastases

BR001 Benchmark Case: Bilateral Adrenal Metastases

Planning Priorities when OARs overlap PTVs

- 1. Meet critical serial OAR (cord, cauda, sacral/brachial plexus) objectives
 - Avoid dose >105% Rx in any overlapping organs** and outside of the PTV
- 2. Meet target coverage & conformity objectives
 - Allow target coverage to drop to variation acceptable in overlap regions with sensitive OARs (bowel, esophagus, stomach)
 - 70% Rx min dose required in PTV
- 3. Meet remaining OAR objectives

NRG BR001: Dose Conformity for *Single* Target per RTOG 0813

Table 6-4

PTV Volume (cc)	Ratio of 50% Prescription Isodose Volume to PTV Volume, R50%	Maximum Dose at 2cm (D2cm) from PTV in any direction as % of Prescribed Dose
1.8	< 7.5	<57.0
3.8	< 6.5	<57.0
7.4	< 6.0	<58.0
13.2	< 5.8	<58.0
22.0	< 5.5	<63.0
34.0	< 5.3	<68.0
50.0	< 5.0	<77.0
70.0	< 4.8	<86.0
95.0	< 4.4	<89.0
126.0	< 4.0	<91.0
163.0	< 3.7	<94.0

Summary of Benchmark Planning

Physics Contribution

Benchmark Credentialing Results for NRG-BR001: The First National Cancer Institute-Sponsored Trial of Stereotactic Body Radiation Therapy for Multiple Metastases

Al-Hallaq et al, IJROBP, Jan 2017.

Benchmark	Passing	Rates
------------------	----------------	-------

	No.	Percentage
Number of attempts at passing benchmark (n = 63)		
1	32	51% ⁺
2	24	38%
3	3	5%
No further attempts	4	6%
Reasons for not passing benchmark at first attempt (n = 31)		
Separate plans did not meet OAR criteria	7	23%
PTV coverage unacceptably high or low	7	23%
Stomach dose constraints exceeded	3	10%
Spinal dose constraints* exceeded	7	23%
Conformity does not meet SBRT guideline	5	16%
Other	2	6%

NRG ONCOLOGY!

- * Passing rate at first attempt of 37.5% (6/16) in first 4 months.
- * Spinal cord constraint is a hard limit. Al-Hallaq et al, *IJROBP*, Jan 2017.

Can Cover PTV or Spare Stomach

NRG ONCOLOGY**

Al-Hallaq et al, IJROBP, Jan 2017.

Distribution of Planning Techniques

	No.	Percentage
Planning technique (n = 59)		
VMAT	46	78%
IMRT	8	14%
3DCRT	1	2%
CyberKnife	4	7%
Number of plans / isocenters (n = 59)		
1 plan / 1 isocenter	39*	66%
1 plan / 2 isocenters	14	24%
2 plans / 2 isocenters	2	3%
CyberKnife	4	7%
Structures prioritized (n = 59)		
PTV	44	75%
Stomach	14	24%

^{*} Only 8/46 institutions credentialed to treat multiple targets
with a single isocenter.
Al-Hallaq et al, *IJROBP*, Jan 2017.

Benchmark Planning Summary

- Challenging for institutions to pass!
 - Separate plans for each target
 - Conformity varied widely and was one of the biggest sources of difficulty

3. IGRT Credentialing

Consensus on Minimum IGRT requirements for SBRT

(First protocol to provide consensus guidelines)

Metastatic Location	Minimum IGRT Requirement	
	No Fiducials	With Fiducials**
LungPeripheral+	Volumetric (3D)	Orthogonal kV (2D)
Lung—Central+	Volumetric (3D)	Orthogonal kV (2D)
Mediastinal/Cervical LN	Volumetric (3D)	N/A
Liver+	Volumetric (3D)	Orthogonal kV (2D)
Spinal	Orthogonal kV (2D)	Orthogonal kV (2D)
Osseous*	Orthogonal kV (2D)	N/A
Abdominal-pelvic+	Volumetric (3D)	Orthogonal kV (2D)

***NOTE:** When osseous/rib metastases are classified into another metastatic location, follow the LGRT guidelines for that site.

**NOTE: When a metastasis contains an implanted fiducial that is clearly visible on kV orthogonal or volumetric imaging, either method can be used

***NOTE**: Registration using a soft tissue surrogate for the tumor is recommended for lung, liver, and abdominal-pelvic metastases for both 3D and 2D IGRT datasets.

NRG BR001: IGRT Credentialing

- Purpose:
 - To assess whether positioning with image-guidance will ensure accurate PTV coverage
- How is this accomplished?
 - Assess description of IGRT workflow including <u>threshold for correction</u> of translations & rotations
 - Assess image quality (technique, FOV)
 - Assess final treatment position relative to PTV margin required for protocol

IGRT Credentialing Examples

NRG BR001: 3D Spine IGRT Case 9

Axis	X (mm)	Y (mm)	Z (mm)
Institution's Shifts	-8.0	1.0	2.0
Reviewer's Shifts	-5.6	1.5	1.0
Difference	-2.4	0.5	1.0

Rotational Differences < 2 degrees

NRG BR001: 3D Lung IGRT Case 9 X:1.10mm Y:4.86mm R Y: 1.34mm P: 0.870 R: 0.880

NRG BR001: 3D Lung IGRT Case 9

Axis	X (mm)	Y (mm)	Z (mm)
Institution's Shifts	2.3	-4.6	6.5
Reviewer's Shifts	1.6	0.1	-5.2
Difference	0.7	-4.7	-1.3

Rotational Differences < 2 degrees

Summary

- Treatment of multiple targets is challenging
 - Single vs multiple isocenters
 - Dose conformity
 - OAR avoidance
 - Motion management
 - Reproducibility of patient positioning
 - Accuracy of IGRT
- Credentialing is likewise challenging

How to expedite credentialing?

- FAQ (<u>http://irochouston.mdanderson.org</u> under "Credentialing)
- Download DVH forms and use them during planning
- Send best examples of IGRT including all DICOM files
- Email physics PIs or NRG with any questions

