Use of the deviation index (DI) for quality control in digital radiography A. Kyle Jones, Ph.D. MD Anderson Cancer Center, Houston, TX Jaydev Dave, Ph.D. Jefferson Hospital, Philadelphia, PA Disclosures None Contributors to AAPM TG 232 • Co-chairs: A. Kyle Jones and Jaydev Dave Members: Ryan Fisher (CCF), Katie Hulme (CCF), Lynn Rill (UF), David Zamora (UW), Andrew Woodward (UNC), Samuel Brady(St. Jude's), Bobby MacDougall (Children's Hospital Boston), Lee Goldman (Hartford Hospital), Susan Lang (Henry Ford), Donald Peck (Henry Ford), Bruce Apgar (Agfa), Jeff Shepard (MDACC), Bob Uzenoff (Fujifilm), Chuck Willis (MDACC)

Eric Gingold (RFSC chair, now IPC chair)
 Behrang Amini and Patrick O'keefe (radiologists)

The infam	ous Table 2		
Table 2	2. Exposure Indicator DI Control Limits fo	or Clinical Images	
	>+3.0	Excessive patient radiation exposure Repeat only if relevant anatomy is clipped or 'burned out' Require immediate management foliow-up.	
	+1 to +3.0	Overexposure: Repeat only if relevant anatomy is clipped or "burned out"	
	-0.5 to +0.5	Targetrange	
	Less than -1.0	Underexposed: Consult radiologist for repeat	
	Less than -3.0	Repeat	

Goo	od intentions
	Once K _{TOT} (b,v) levels are set, it is useful to identify several types of "control limits" on DI: a target range, a "management trigger" range, or a "repeat" range (see Table 2). The reason for this is that unlike filmed images, in which inadequate or excessive image optical density is a determinant of when a repeated film is needed, the reason for repeating a digital image is primarily noise related. What would be an underexposed film image may be of adequate diagnostic value in digital form. Similarly, it is never appropriate to repeat overexposed digital images unless analog-to-digital converter saturation has occurred, which may cause relevant parts of the image to be "borned out" or "clipped" (that is, all pixels in the affected region are forced to the maximum digital value and microntating no information) or contrast to be affected in excessively exposed regions of the image. Since this judgment depends upon the diagnostic task, it is appropriate to seek consultation with a radiologist for certain ranges of Di-indicated under- and overexposure prior to repeating.

But perhaps t	flawed logic	
combinat 10 ms). ^[1]	operly functioning AEC system will produce optical densities of ±0 sins of kV_p and plauntom thickness (adjusting mA to result in exposite a screen film combination, optical density in the straight-line detected to detector exposure (or $K_p N_p > 10$ follows:	sure times greater than
	$\Delta OD = \gamma \log_{10} \left(\frac{K_{DD_1}}{K_{ND_1}} \right)$	(3)
Comb	oining equations (2) and (3), the range of deviation indices correspond be:	onding to a given OD
	$\Delta DI = \left(\frac{10}{\gamma}\right) \times \Delta OD$.	(4)
	screen/film combination with a gamma of 2.85 (a fairly common a table DI range would be:	namma in clinical use),
	$\Delta DI = \left(\frac{10}{2.85}\right) \times 0.3$	9900
	= 1.05 = ±0.5.	(4a)
The ti	ask group recommends the action levels shown in Table 2.	

Review and replace

• Charge: To investigate the current state of practice for CR/DR Exposure and Deviation Indices based on AAPM TG 116 and IEC-62494, for the purpose of establishing achievable goals (reference levels) and action levels in digital radiography.

Methods Solicited data for 9 body parts and views for adult and pediatric digital radiography from 10 sitted Abdomen. AP/KUB, Upright, Decubitus Chest: PA, AP, Lateral, Decubitus Pelvic: AP Extremity: without multiple views on same image Institutional Review Board/Quality approvals Of calculated from Et, and Et Minimal pre-processing of data - 9.9 \$ DI \$ 49.9 505,930 exposures analyzed	Balls & Mendelters and gettined little citizes. **Electricity data strikes.** 2. **Marker orditated little strikes.** **Amarker orditated little strikes with beamer strikes independent and a few strikes orditated little strikes orditated little strikes. 5. **Illustrational emoletic medical consistence of the few strikes.** 6. **Conne negligene publishes discharge publishes discharge orditated little strikes.** 5. **Amy presence of data discharge orditated little strikes.** 7. **Song per seal of one bind few orditated little strikes.** 7. **Song per seal one bind few o	Optional data policies L. Constant and Constant advant image uses L. Constant and Constant advant image uses L. Constant and Constant and Constant and L. Constant and

Methods			
Patient ty Adult v Exposure Manua Image rec Scanne Practice s	rpe s. pediatric control method I vs. AEC ceptor technology d pixel vs. fixed pixel	regate and stratified by	
July 31, 2017			

					Ì			
Breakdown of view	rs analyzed by this task gro	up.			_			
Body Part Adult/	pediatric View		% of total views		1			
Abdomen Adult	KUB	34803	6.9%		i			
	Upright	5858			1			
	Decubitus	9182	1.2%		_			
Pediat	ric KUB/Babygram	2648	0.5%		1			
	Upright	307	0.1%		1			
	Decubitus	208	<0.1%		in			
Chest Adult	AP	91756	18.1%		_			
	PA	59906	11.8%		i			
	Lateral	65511	12.9%		1			
	Decubitus	258	0.1%		i			
Pediat		8609	1.7%		_			
	PA	3410 5195	0.7%		i			
	Lateral Decubitus	5195 15	<0.1%		1			
Pelvis Adult	AP	14300	<0.1% 2.8%		in			
Pervis Adult Pediat		1285	0.3%		_			
Extremity Adult			35.9%		in			
Pediat			4.2%		1			
			274		in			
					_			
				15	ı			

of praction	ce	ed about the state	3
July 31, 2017	AAPM 2017 MO-F-702-3	A. Kyle Jones, Ph.D. and Jayslev Dave, Ph.D.	16

Table 5. E	l-(IEC) values used	at sites submitting dat	a for analysis by this task	group.
Rody part	Adult/pediatric	Technology	Number of participating sites	Range of El-
Abdomen	Adult	Scanned pixel (CR)	7	400 - 945
Papagariagii	Aut	Fixed pixel (DR)	4	149 - 890
	Pediatric	Scanned pixel (CR)	7	400 - 888
		Fixed pixel (DR)	4	445 - 700
Chest	244	Scanned pixel (CR)	7	340 - 888
- COLE	74001	Fixed pixel (DR)	4	102 - 685
	Prediatric	Scanned pixel (CR)	7	345 - 571
_		Fixed pixel (DR)	4	158 - 700
Pelyis	Adult	Scanned pixel (CR)	7	400 - 945
		Fixed rivel (DR)	4	250 - 802
	Perfiatric	Scanned pixel (CR)	7	400 - 1110
	100001	Fixed pixel (DR)	4	445 - 500
Extremity	Adult	Scanned pixel (CR)	7	400 - 1776
		Fixed pixel (DR)	4	104 - 1730
	Pediatric	Scanned pixel (CR)	7	400 - 1629
		Fixed pixel (DR)	4	250 - 1258
values rec difference	ommended by equ	ipment manufacturers. for different views of th	ting sites and these value . At each participating sit we same body part for the	, there were no

			ıu		al I	OV	٧CI	$^{\circ}$	ıu	II O	tribut
Table A.1.9. Descrip	otive sta	atistics I	у ехро	sure con	ntrol m	ethod an	d techn	ology fo	r Di valu	ues for	adult
abdominal views.		_									
	-	Manu		AEC	gory 1	Unknov		AFC	Unkno		Category 3
Exposure control	-	CR	DR	CR	DR	CR	NU DB	CR	CR	DR	Unknown
Technology	-	CR 4012	DR 2351	CR 9564	DR 768	13240	DR 1487	1511	3177	DR 931	2528
n Mean	_						-0.2				
Mean 95% Confidence	Low	1.8	1.4	0.5	-2.4	1.3	-0.2	-0.3	1.1	-0.1	2.0
Interval for Mean	LOW	1.7	1.3	0.4	-2.5	1.3	-0.2	-0.5	1.0	-0.2	1.8
Interval for Mean	Bou										
	nd										
	Linn	1.9	1.5	0.5	-2.3	1.3	-0.1	-0.2	1.2	0.0	2.1
1	er	1.3	1	V.3	1.0	1	0.1	- ×-2	1 **	J	
	Bou										
	nd										
5% Trimmed Mean	_	1.8	1.4	0.5	-2.4	1.3	-0.2	-0.3	1.2	-0.1	2.1
Median		1.9	1.4	0.5	-2.5	1.5	-0.2	0.0	1.2	0.0	2.3
Variance		9.6	5.6	4.8	1.5	6.1	1.8	7.2	7.7	1.6	11.6
Std. Deviation		3.1	2.4	2.2	1.2	2.5	1.3	2.7	2.8	1.3	3.4
Minimum		-9.5	-9.6	-9.4	-9.5	-9.9	-6.5	-9.9	-9.5	-3.9	-9.8
Maximum		10.0	9.7	9.5	4.2	9.9	8.7	9.8	9.2	7.5	9.9
Range		19.5	19.3	18.9	13.7	19.8	15.2	19.7	18.7	11.3	19.7
Interquartile Range		4.2	3.1	3.0	1.3	3.0	1.4	3.7	3.8	1.6	4.5
Skewness		-0.2	-0.2	-0.4	-0.2	-0.3	-0.1	-0.4	-0.3	-0.1	-0.5
Kurtosis		-0.2	0.9	0.7	6.8	0.9	4.6	0.0	0.0	1.5	0.0

for qua	an we us ality cont		ation
July 31, 2017	AAPM 2017 MO-F-702-3	A. Kyle Jones, Ph.D. and Jaydev Dave, Ph.D.	28

1. Review y	our DI data		
		ess)	
	ur DI distribution t	to the data in TG-232 deviation of the DI	

Table 12. S	tandard deviation of	the DI for ac	fult radiography.				
			the smallest standard	Site with	the largest standard		
Body part	View	de	viation of the DI*	dev	deviation of the DI*		
		Number	Standard deviation of	Number	Standard deviation of		
		of exams	DI	of exams	DI		
Abdomen	KUB	3746	1.8	8389	3.1		
	Upright	931	1.3	1002	2.9		
	Decubitus	6401	2.3	1200	3.6		
Chest	AP	12491	2.0	43915	2.3		
	PA	12061	1.7	20424	2.2		
	Lateral	20810	1.7	16260	1.9		
	Decubitus						
Pelvis	AP	2236	1.6	1480	2.8		
Extremity	Lower Extremity	17175	2.7	83209	3.3		
	Upper Extremity	4877	1.8	21389	2.7		

Best and	worst ca	se SD	D(DI) — all	sites	– peds		_			
	Table 13. Standard deviation of Body part View		f the DI for pediatric radiography. Site with the smallest standard deviation of the DI*		e largest standard		_			
Body part	view	Number of exams	Standard deviation of DI	Number of exams	ion of the DI* Standard deviation of DI					
Abdomen	KUB/Babygram Upright	437	1.5	1499	2.7					
Chest	Decubitus AP	928	1.8	888	2.2		_			
	PA Lateral Decubitus	957 1422	1.5	1960 2922	2.2					
Pelvis Extremity	AP	177 1452	1.3	630 10759	2.5		_			
*Number o	Upper Extremity of examinations from s	1036 site was at leas	1.7 st 10% of the total num	6012 ber of examina	2.5					
: Insufficie	ent sample size (data j	provided in Ap	pendix A for reference).			_			
July 31, 2017	AAPM 201	17 MO-F-702-3	A. Kyle Jones, Ph.D. and Jayd	lev Dave, Ph.D.		31	_			
2. Review	your El	⊤valu	es.				_			
 Mean DI sh 	hould equal (0.0								
Remember	r, the El is an	indicat	o <u>r</u>							
Stick arour	nd for the ne	vt talk					_			
Stien area.		AC COM								
						32				
201 21, 2017	700 III 201	17 MiO-1-702-3	K Nyas Zonea, Frico. and Jayo	er bare, ricb.		31	_			
3. Adjust	vour DH	limits								
J. Adjust	your Dri	111111111111111111111111111111111111111								
• DI limite ch	nould conside	or					_			
	rt and view	e.								
			teristics of radi	ologists			_			
 Image pr 	ceptor technol rocessing algor	ithm								
• VOI iden	tification meth	od								
• A tigrad ra	view process	s should	be triggered	when DI	limits are		_			
exceeded	view process	- SHOUIG	be triggered	wileli Di	minus are					
							_			
						33				
							_			

Needs to	make	the D	l more	usefu
----------	------	-------	--------	-------

- \bullet Utilities for configuring global EI_T values for broad categories
- The ability to set DI limits at any level of granularity, from a single universal set of limits to limits by individual body parts and views
- Both of the above may be accomplished by allowing upload of ${\rm EI}_{\rm T}$ values and DI limits in a specified file format
- Utilities for easily filtering and downloading EI_{T} values, EI data, and DI data, preferably over the network
- An optional overlay of the identified VOI on the FOR PROCESSING image data

July 31, 201

APM 2017 MO-F-702-3 A. Kyle Jones, Ph.D. and Jaydey Dave, Ph.

In the end

- It's time that we used the data that are available to us
- To drive quality control and quality improvement
- The FDA should mandate that the IEC EI and DI be reported by all digital radiography systems in the US
- • State regulatory agencies should mandate that sites have a QA program for their radiography operation and log and review the DI and $\rm EI_T$

July 31, 20

AAPM 2017 MO-F-702-3 A. Kyle Jones, Ph.D. and Jaydev Dave, F