Considerations and strategies for setting target exposure indicator (El_T) in digital radiography

Robert D. MacDougall, M.Sc. Boston Children's Hospital

Charles E. Willis, Ph.D. UT M D Anderson Cancer Center

Monday July 31, 2017

"The nice thing about standards is that you have so many to choose from"

-Andrew S. Tanenbaum

2

Why use DI and EI_T ? $DI = 10\log_{10}(\frac{EI}{EI_T})$ CONS PROS Do not need to worry about different EI implementations One number for technologist/radiologist imaging

Does not necessarily point to over/under-exposure · Can be mis-used for repeat

Manufacturer EI_T presets

Exam	DR 1	DR 2	DR 3	DR 4	Range
Chest PA	250	206	175	216	1.4X
Humerus	250	N/A	245	150	1.7X
Abd Supine	600	252	595	175	3.4X

Ma	nufac	turer	El _⊤ presets	
Exam (Abdomen)	DR 1	DR 2		
KUB	595	250		
AP	595	250		
Bladder	175	250		
Supine	315	250		
Lateral	1050	250		
Upright	525	250		
		Monday July 31, 2		9

Ma	anuf	acturer El _T presets	
Exam (Abdomen)	DR 1		
KUB	595		
AP	595		
Bladder	175		
Supine	315		
Lateral	1050		
Upright	525		
		Monday July 31, 2017	10

Manufacturer EI_T presets

Exam (Abdomen)	DR 2			
KUB	250			
AP	250		-	
Bladder	250			100
Supine	250			
Lateral	250			
Upright	250			

St	әр	1:	E	IA	AC	cu	rac	су	
SOD	SID	Plate	Focus	Process	sing Menu	Unique/S		Add. Filter	
110	110	Small	1 mm	Serve	CO: EL_G	Junique/s	ervice	21 mmAI	
mR (IC)	uGy (IR)	kV	mAs	ms	Cu/AJ	HVL.	EL_8	96	
	10.59	70	7.1		0/0	6.76	1125	5,87	
	0.93	70	0.7		0/0		98	4.80	
	76.14	70	50	-	0/0	6.77	7840	2.88	
			-	-		max 9	9 @ 70 kV:	5.67	
	1.54	50	7.1	-	0	4.43	107	-43.93	
	4.76	50 60	7.1		0	5.7	454	-4.85	
	10.59	70	7.1		0	6.76	1125	5.87	
	19.75	80	7.1		0	7.69	2239	11.79	
	32.63	90	7.1		0	8.31	3691	11.60	
	48.37	100	7.1		Ö	9	5401	10.44	
	66.82	110	7.1		0	9.47	7242	7.73	
	88.16	120	7.1		8	10.1	9258	4,77	
	77.97	130	5	-	0	10.4	7653	-0.29	
	93.04	150	2	-	0	10.8	8666	-7.36	
	00.04		-	1			0.000		
SOD	SID	Plate	Focus	Process	ing Menu				
110	110	Large	1 mm	Oth	ar: El_s	1			
mR (IC)	uGy (IR)	KY.	mAs	ms	mm Cu	HVL	EI	56	
	11.32	70	7.1	1.11	0	6.77	1211	6.52	
	1.00	70	0.7		0		104	4.04	
	80.95	70	50		0	6.73	8299	2.46	
						max 5	6 @ 70 kV:	6.52	
			Monday J						

S	tep 2:	AEC	Calibratio	on
Grid: f_0 = 110 cm / r = 8 / L Grid: f_0 = 140 cm / r = 12 / Attenuation factor: 1.9				
Chamber 1	K _τ [μGy]		tolerance	
S200		9.5	± 2.0	
\$400 /Data Set 1		4.8	± 1.0	=2.5 uGy +/- 0.5
\$800		2.4	± 0.5	
S1000		1.9	± 0.36	

	Step) 2: Ae	EC Ca	libratio	on
Exam	DR 1	DR 2	DR 3	DR 4	Range
Abd Supine	600	252	595	175	3.4X
Chest PA	250	206	175	216	1.4X
Humerus	250	N A	245	150	1.7X
		ļ			
		AEC Sensitivity			
		1000/200 = 5 uG			
		Not internally cor	isistent		

Method 1: Exam (anatomy) – specific VOI

 EI_T based on Image Quality (SNR) in VOI

Method 2: Central tendency of histogram

Defined by IEC Requires wider range of examspecific EI_T

Step 3: Set and review

- · Perfect is the enemy of good!
- Start somewhere
 - e.g. Abdomen (300), Chest (400), Extremity (700)
- Select subset (e.g. one room) ensure correct collimation VOI/processing
- Radiologist review - bookend image noise using outliers

BCH	Values	
Exam	Philips Digital Diagnost*	
Abdomen Supine	300	
Chest PA	400	
Humerus	700	
Mon	day July 31, 2017	22

Ongoing Review

 - "productivity gain occurred as a result of...interest being shown to them"

 i.e. the act of reviewing data drives quality improvement more than the reporting results

23

	DA chest-	Monthly I	Report		
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		1978-1		
6 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Constant State	Sec. 1		
Sec. 44.200	N 2	3430		14 A A A A	
Sec. Barris		3 In 1994	200 De		
	1.	1942	COLUMN TO DE		_

Considerations and strategies for setting target exposure indicator (EI_{T}) in digital radiography

Robert D. MacDougall, M.Sc Boston Children's Hospital

Charles E. Willis, Ph.D. UT M D Anderson Cancer Center

Disclosures

• Member of X-Ray Medical Advisory Board GEMS

Introduction

- El target values were deliberately avoided by AAPM TG 116. Too broad scope for the TG. State of practice largely unknown but expected to be widely •

- variable.
 Expectation that manufacturers should be able to define appropriate target values for their specific technologies like screen/film speed classes.
- AAPM TG 232 survey data confirmed state of practice was highly variable.
- leads to question of how to establish target El values.

II. Preconditions

- DR system properly calibrated for EI
- Consistent configuration management
- Operator compliance with
 - technique guides,
 - patient positioning,collimation,
 - SID,
 - use of grids,
 - patient size estimation and size/technique selections.

III. Three Approaches for discussion

- Statistical approach
- Deterministic approach
- Experimental approach

Statistical approach aka laissez-faire approach

- Collect data to determine state of practice
- Not unlike method of TG 232
- Remember that EI distributions are log-normal

Example of Statistical Approach **Portable Chest** 406.3386591 3.105351909 374.84 262.56 Mean Standard Er Median Mode 300 200 193.7550474 37541.0184 6.32321265 Standard Deviation Sample Variance Kurtosis 1.597613721 Skewness Range Minimum 2378.31 4.26 1119 234 465 580 580 580 580 810 925 11040 11270 11270 11270 11270 11270 11270 11270 2191 22191 22191 22191 2382.57 Maximum IEC EI 1581876.4 um 3893 6.08827127 Confid El_T = 375

Deterministic approach aka AEC approach

- Set the EI_{T} to some value of air kerma that you expect to produce an acceptable image by the technology used
- What TG 116 expected that the manufacturers would do

Example of a Deterministic Approach

- Assume SNR = 30 desired For quantum limited system, about 1000 photons contribute per pixel Only about $\frac{1}{2}$ incident photons contribute, so need 2000 incident Detector element is about 2X10⁵ cm² The neargy fluence would be 50 X 10³ eV times 1.0 X 10⁷ photons per cm² or 5 X 10⁵ eVCm². We have to know the conversion factor (the charge on an electron is 1.6 X 10¹⁹ C) or 1.6 X 10¹⁹ J/eV to get about 6 X 10⁸ J/m² To get the air KERMA from the energy fluence, you multiply times the ratio of the linear attenuation coefficient for air divided by the density of air. At 50 keV, its 40 cm²/H₂s, so the air KERMA is 3 X 10⁴ G yr 3 J µ₆. One 6 y is 1 J/R₂, so the air KERMA is 3 X 10⁴ G yr, 3 µ₆.

Another Example of Deterministic Approach: Speed Class

Speed Class	Receptor Exposure (mR)	Receptor Exposure (µGy)	IEC EI _T
100	1.0	8.76	876
200	0.5	4.38	438
250	0.4	3.50	350
350	0.3	2.50	250
400	0.25	2.82	282
800	0.125	1.41	141
1600	0.063	0.71	71

Caveads: Neither of these deterministic approaches really dealt with secondary photons. The detector doesn't distinguish between primary or secondary photons. In a bedside chest examination the SPR is at least 1 without a grid and likely 0.5 even with a grid, so El_Tmay need to be adjusted upward accordingly to compensate. This is just the median – what about the tail of the exposure distribution? 1/10 SNR_{median}?

Experimental approach aka Phantom approach

- Use geometric or anthropomorphic phantoms to simulate the anatomy of interest
- Set the EI target for what is observed when reasonable radiographic techniques or AEC is used and acceptable quality metrics are obtained
- Adjust EI target based on clinical results

Experimental Approach:

Choice of patient-equivalent phantom

- Anthropomorphic phantom Potential difficulties with positioning, segmentation, image processing

Geometric phantom

- PMMA
- ANSI/AAPM phantoms (configurable to Chest, ABD. Skull, extremity)
 LucAl phantoms (Chest, Abdomen, Pedi Chest/Abd)
- ACR RF phantom (configurable to Chest, ABD. Skull, extremity)

May also measure entrance skin exposure (ESE) for comparison to Reference Values or Regulatory Limits

Example of Experimental Approach

- Five mobile DR systems (5/2014: we were pretty ignorant about El)
 LucAl Chest phantom followed by clinical demo
 100 kVp, 1.6 mAs, 50" SID, no grid

Vendor	ElT	Elave
GE	787	856
Carestream	850	562
Philips	586	621
Seimens	560	703
Fuji	876	2127
average	731.8	973.8
w/o Fuji	695.8	685.5
Standard deviation	21%	19%

	Adjusting technique for thickness: expecting too much?							
ACR Chest Phantom (Non-grid) Image kVp mAs Raw PV Raw SD Raw SNR DI (+) PMMA								
14	100.0	1.6	1378.3	5.7	241.8	2.4	390.8	None
15	105.0	1.6	1435.4	6.4	2241.8	1.7	331.5	2 cm
16	110.0	1.6	1509.8	7.2	209.7	0.8	272.4	4 cm
17	110.0	1.6	1521.6	7.4	205.6	1.0	281.5	4.1 cm/ACR
		Average:	1461.3	6.7	220.3	1.4	319.1	
		COV:	0.046	0.117	0.074	0.497	0.171	
		COV < 10%:)	PASS	FAIL	PASS	FAIL	FAIL	
		\sim						
	ACR Chest Phantom (Grid)							
Image	kVp	mAs	Raw PV	Raw SD	Raw SNR	DI	E	(+) PMMA
10	100.0	5.0	1309.1	15.9	82.3	3.7	530.2	None
11	105.0	5.0	1374.2	15.0	91.6	2.8	434.7	2 cm
12	110.0	5.0	1436.4	14.2	101.2	2.1	365.2	4 cm
13	110.0	5.0	1451.4	14.5	100.1	2.3	383.9	4.1 cm/ACR
		Average:	1392.8	14.9	91.7	2.4	394.6	
		COV:	0.047	0.050	0.096	0.162	0.091	
		COV < 10%;						

1\/	Canal			caveats
		ilisions		cavears
	COLLE	4310113	ana	cuvcuts

- Three approaches for setting EI_T
 - Statistical
 - Deterministic
 - Experimental
- Calibration of detectors is critical
- Collimation is critical for segmentation and calibration
- Beam quality, (kVp, HVL) and SPR is critical
- El is only accurate to ± 20%
 Your mileage may vary