A Concise Introduction to MRIPhysics

Anthony Wolbarst, Nathan Yanasak, R. Jason Stafford

Outline for Today

Introduction to MRI

- 'Quantum' NMR and MRI in 0D Magnetization, m(x,t), in a Voxel Proton Density MRI in 1D T1 Spin-Relaxation in a Voxel MRI Case Study, and *Caveat*
- Sketch of the MRI Device 'Classical' NMR in a Voxel Free Induction Decay in 1D
- T2 Spin-Relaxation
 Spin-Echo Reconstruction in 1D
 Tissue Contrast-Weighting in SE
 Spin-Echo / Spin-Warp in 2D

Introduction to MRI

Soft Tissue Contrast: CT vs. MRI

posterior reversible encephalopathy syndrome (PRES): edematous changes

CT MRI

Magnetic Resonance Imaging

Yields distinct spatial maps of anatomy, physiology, and pathology of soft tissues.

Multiple unique types of *contrast* – created through, and informing on, subtle aspects of tissue biophysics.

No ionizing radiation.

Risks from intense magnetic fields, RF power.

Expensive.

Technology complex, challenging to learn.

Newtonian Contrast among Apples

Different biophysical sources, sensors

Color **Texture** Smell **Taste H**oles etc.

Medical Imaging Contrast

Operation of Imaging Modalities

Modality	Probe / Signal	Detector	Source of <i>Contrast</i> : Differences in
Planar R/F X-ray CT	X-rays transiting the body	AMFPI, II+CCD, GdO, <i>etc.</i> , array	$\int_{S} \mu(\rho, Z, kVp) ds$
Nuc Med, SPECT, PET	Gamma-rays, 511 keV emitted	NaI single crystal; multiple NaI; LSO array	Radiopharmaceutical uptake, concentration ^{99m} Tc, ¹⁸ FDG,
US	MHz sound, reflected	Piezoelectric transducer	ρ , κ , μ_{US}
MRI	Protons, photons probe mol. mag. environments	RF radio receiver coils	T1, T2, PD, [O], blood flow, water diffusion, chemical shift,

Standard Breast Modalities

Put Another Way...

Soft-Tissue Water and Lipids Hydrogen Nuclei in B_0 Spin-Relaxation Rates, *etc.*,

NMR

Spatial Distributions

MRI

'Quantum' NMR and MRI in 0D

Two Approaches to Proton NMR/MRI (incompatible!)

MRI Magnets

principal magnetic field B_0 defines z-axis

Open: electromagnetic or permanent

Superconducting:

e.g., niobium-titanium wire

Three External Magnetic Field Types in *Open*-Magnet MRI

 B_0 , G_z , and G_x all point along z. Not B_{RF} !

Moving Charge Produces Magnetic Field compass needle; proton 'spinning' on axis

Magnetic Dipole Tends to Align in External Field

Energy to Flip Over Needle with Magnetic Moment μ in B_z

$$\Delta E_{180^{\circ}} = \pm 2 \, \mu_z \, B_z$$

Nuclear Zeeman Splitting for Proton: $\Delta E = \pm 2 \mu_z B_z$ μ_z points only along or against z

South

North

$$\Delta E_{180^{\circ}}(B_z) = \pm 2 \mu_z B_z$$

Nuclear Magnetic Resonance: Larmor Frequency

$$v_{\text{Larmor}}(B_z) = (\gamma/2\pi) B_z$$

NMR Gedanken-Experiment on Water

monochromatic RF power absorption at (and only at) $v_{\text{Larmor-H}_2O}$

3D Sensitive Point Reconstruction

The three gradient fields oscillate wildly, produce a net field *stable* at only one voxel.

NMR occurs there.

"Sensitive point" then shifts one voxel over.

Proton Density MRI in 1D

Summary: PD MRI on 1D Patient

Proton-Density MRI

contrast from differences in PD

Two MRI Motion Artifacts

respiration

aortic pulsation

Magnetization, m(t), in a Voxel

Voxel's MRI Signal Proportional to Its Magnetization, m(x,t)

- i) What is the magnitude of voxel magnetization at dynamic thermal equilibrium, m_0 ?
- ii) How long does it take to get there (T1)?
- iii) What is the mechanism?

Ensemble of Compass Needles or Protons

Single voxel at position x

Gentle agitation (noise energy)

Magnetization, m(t), for the Voxel at Position x:

magnetic field from the ensemble of protons or needles themselves

Single voxel at position x

Gentle agitation (noise energy)

Filling Four Energy Levels of Marbles vs. Noise Level equilibrium from battle between energy and entropy

(all slippery; black balls denser)

too much too little just right

Magnetization in Voxel at x, under Dynamic Equilibrium:

$$m_0(x,t) = [N_-(x,t) - N_+(x,t)] \times \mu$$
, $t \to \infty$

B_7	<u> </u>	m_0
0 tesla	CO CO CO CO	0
$\begin{vmatrix} 0.01 \text{ T} \\ or \\ t = 0 + * \end{vmatrix}$		~0
»1.5 T		$N\mu_z$
1.5 T $t >> 0$		$\frac{5\times10^{-6}\ N\mu_{z}}{(Boltzmann)}$

^{*} after abruptly turning on B_z , or after a 90° pulse.

RF Signal from Voxel, #1

Voxel's MRI signal is proportional to its magnetization, m(x,t)

#1: $s(x) \sim m(x,t) \sim PD(x)$

T1 Proton-Spin Relaxation, in a Voxel

Voxel's MRI Signal Proportional to Its Magnetization, m(x,t)

- i) What is the magnitude of voxel magnetization at dynamic thermal equilibrium, m_0 ?
- *ii*) How long does it take to get there (T1)?
- iii) What is the mechanism?

Switching B_z On at t = 0 Induces Magnetization $m(0_+)$

Over Time, $m(0_{\perp})$ Moves from $m(0_{\perp})$ toward m_0

protons in *voxel at x*

$$B_{z}(0_{+})=0$$

$$m_z(0_+) = 0$$

$$\boldsymbol{m}(\infty) = \boldsymbol{m}_0$$

$$N_{-}(\infty) > N_{+}(\infty)$$

Polarization after t = 0

Aside: Exponential Decay of Radionuclide

photon atten. (x), tracer conc. (t), cell killing (D), etc.

Exponential Return of $m_z(t)$ to Equilibrium Value, m_0

#2:
$$m_z(t)/m_0 = 1 - e^{-t/T1}$$

Voxel's MRI Signal Proportional to Its Magnetization, m(x,t)

- i) What is the magnitude of voxel magnetization at dynamic thermal equilibrium, m_0 ?
- ii) How long does it take to get there (T1)?
- iii) What is the mechanism?

In MRI, the <u>only</u> thing a proton is <u>ever</u> aware of, or reacts to, is the <u>local magnetic field</u>, $B_{local}(t)$.

/////

In addition to B_0 and G(t), the source of $B_{local}(t)$ can be either $\underbrace{external}_{local}(B_{RF})$ or $\underbrace{internal}_{local}(e.g., dipole-dipole$ from a moving partner-proton).

T1 Transitions: Magnetic v_{Larmor} 'Noise' fluctuations in proton magnetic dipole-dipole interactions

Each water proton produces magnetic field fluctuations of all frequencies, including local $v_{Larmor}(x)$, at its **partner** proton

Factors Affecting v_{Rotation} of Water Molecule

Two Materials in 2 Voxels in 1D Phantom

T1 MR image

Approximate Relaxation Times of Various Tissues

Tissue	PD p ⁺ /mm ³ , rel.	T1, 1T (ms)	T1, 1.5 T (ms)	T1, 3T (ms)	T2 (ms)
pure H ₂ 0	1	4000		4000	4000
brain					
CSF	0.95	2000	2000	2000	200
white matter	0.6	700	800	850	90
gray matter	0.7	800	900	1300	100
edema			1100		110
glioma		930	1000		110
liver			500		40
hepatoma			1100		85
muscle	0.9	700	900	1800	45
adipose	0.95	240	260		60

T1-w MR Image

MRI Case Study, and Caveat

with T1, FLAIR, MRS, DTI, f MRI, and MR-guided biopsy studies of a glioma

Case Study

57 year old $\$ medical physicist has had daily headaches for several months. Responds to $\frac{1}{2}$ Advil.

Physical examination unremarkable. Patient appears to be in good general health, apart from mild hypertension, controlled by medication.

Good diet, exercises moderately. Patient reports no major stresses, anxieties.

CT indicates a lesion in the *right posterior temporo-occipital* region, adjacent to *occipital horn of right lateral ventricle*. MRI for better contrast.

Principal concern: Vision for reading.

Lesion: Right Posterior Temporo-Occipital Region, adjacent to occipital horn of right lateral ventricle

T1-w

T1-w FLAIR

Chemical Shift and Non-invasive MRS 'Biopsy' acetic acid

Functional MRI and Diffusion Tensor Imaging

visual stimulus

MRI-Guided Stereotactic Fine-Needle Biopsy

Caveat:

strong gradient fields outside bore

within / with patient, others

aneurysm clip, shrapnel cochlear implant, prostheses artificial heart valve stent, permanent denture defibrillator, pacemaker electrodes, neurostimulator medical infusion pump drug-delivery patch, tattoo

in / into imaging suite

O₂ tank, IV pole wheelchair, gurney hemostat, scalpel, syringe scissors, pen, phone, laptop tool, tool chest cleaning bucket, mop fire extinguisher, ax gun, handcuffs