Outline for Today

	Introduction to MRI
1.	'Quantum' NMR and MRI in 0D
	Magnetization, $m(x,t)$, in a Voxel
	Proton T1 Spin Relaxation in a Voxel
	Proton Density MRI in 1D
	MRI Case Study, and Caveat
2	Sketch of the MRI Device
	• 'Classical' NMR in a Voxel
	Free Induction Decay in 1D
3	T2 Spin-Relaxation
-	Spin-Echo Reconstruction in 1D
	Tissue Contrast-Weighting in SE
	Spin-Echo / Spin-Warp in 2D

Sketch of the MRI Device

Major Components of a Superconducting MRI System

Cylindrical Superconducting Magnets

 B_0 : 1.5 T, 3.0 T, (7 T) 50 km Nb-Ti wire in Cu Homogeneity: <10 ppm

Shielding: active, passive, Cryogen: 0.1 liter He/y Weight: 4 tons

External Magnetic Fields

x-Gradient Magnet Winding for Superconducting Magnet

x-gradient coil

x-Gradient dB_z/dx Rise time Slew rate

20 – 60 mT/ m 0.3 ms (to reach 10 mT/ m) 50 – 200 mT/m/ms

Artifact: Gradient Non-Linearity correctable

RF Coils

 $B_{\rm RF}$: 20 μT Pulse on-time: 3 msec RF power: ~15 kW SAR: ~2W/ kg

'Parallel' RF Receiving Coils for Much Faster Imaging transmit parallel coils in the works

'Classical' NMR in a Voxel

The Two Approaches to NMR/MRI

quantum state function

Simple QM |↑ ⟩, |↓ ⟩

transitions between spin-up, spin-down states

 $f_{\text{Larmor}}, m_0, \text{T1}$

oversimplified

Classical Bloch Eqs. for expectation values

now this

precession, nutation of voxel magnetization, m(t)

 f_{Larmor} , T2, *k*-space

exact; from full QM

Normal Mode, at v_{normal} relaxation time T

A Normal Mode of a 2-D Pendulum

Normal Mode Precession about External Gravitational Field

$$(d\mathbf{p}/dt = \mathbf{F})$$

 $dJ / dt = \tau$ (torque) J(t): Angular momentum

Precession at v_{normal}

<u>Normal Mode Precession of Voxel's m(x,t) in B_0 </u> can be derived rigorously from quantum mechanics

Bloch Equations of Motion for m(t,x) in $B_{z}(x)$

 $dJ/dt = \tau$ but $\mu = \gamma J$, so... $d(\mu/\gamma)/dt = \tau$

Lorentz torque on spins with magnetic moment μ in B_z :

 $\tau = \mu \times B_z$ (vector cross product)

Equation of motion becomes: $d\mu(t)/dt = \gamma \mu(t) \times B_{\tau}$.

Sum/average over all protons in bundle:

 $d\boldsymbol{m}(t)/dt = \gamma \boldsymbol{m}(t) \times \boldsymbol{B}_{z}$

Expectation Value, $\langle m(t) \rangle$, behaves <u>classically</u>

With T1 relaxation along z-axis: $dm(t)/dt = \gamma m(t) \times B_z + [m(t) - m_0]\hat{z} / T1$

Fixed Frame

Rotating at $v_{\text{Larmor}}(x)$

 $m(\mathbf{x},t)$

v

The ponies don't advance when you're *on* the carousel.

Resonance Energy Transfer when $v_{\text{driving}} = v_{\text{normal}}$

Resonance and Nutation of a Gyroscope

net $\boldsymbol{v}_{\text{resonance}}$ power input

Nutation of the Voxel's Magnetization, m(x,t)

Free Induction Decay in 1D

Reminder: Fourier Decomposition of Periodic Signal $S(t) \sim \frac{1}{2} + (2/\pi) \{ \sin(2\pi v_1 t) + \frac{1}{3} \sin(6\pi v_1 t) + \frac{1}{5} \sin(10\pi v_1 t) + ... \}$

FID: m(x,t) for a *Single* Voxel at x, following a 90° pulse, precessing in the *x*-*y* plane

RF transmit coil

In MRI, the <u>only</u> signal the detector <u>ever</u> sees comes from the <u>set</u> {m(x,t)}, <u>all</u> precessing in the x-y plane !!!

FID: Precession, Reception, Fourier Analysis (single voxel) *n.b.* detect induced *V*(*t*), not power absorption (as before)

x = 0 cm

FID: Selecting the z-Slice that Contains the x-Row

New: Keep on Going, Closing the Loop

During Readout, k_r Increases Linearly with t

Signal is sampled sequentially 256 or 512 times spaced Δt apart. $t_n = n \Delta t$ is the exact sampling time after G_x is turned on.

 $k_x(t)$ for all voxels increases linearly with t while the echo signal is being received and read: $k_n = [G_x \gamma / 2\pi] t_n$.

Larger magnitude k-values correspond to greater spatial frequencies!

Herringbone Artifact

noise spike during data acquisition

T2 Spin Relaxation

T2 Relaxation refers to the rate at which the transverse magnetization, $m_{xy}(t)$, and the Echo signal it generates, Decay.

T2 relaxation results from *T1-Events*, plus those from *Non-Static, Random, Non-Reversible* Proton-Proton Dipole Interactions. <u>Both</u> Contribute to the Rate 1/T2!

Dipole interactions:

 Proton fields overlap, alter v_{Larmor};
Exchange of spin neither involves an energy transfer

Secular Component of T2 Relaxation Mechanism

quasi-static spin-spin interactions *not* spin flips.

Phase Loss: T2 De-coherence of Proton Packets in Voxel

Exponential T2-Caused De-Phasing of $m_{xy}(x,t)$ in x-y Plane

 $d\boldsymbol{m}(x,t)/dt = \gamma \, \boldsymbol{m}(x,t) \times \boldsymbol{B}_{\boldsymbol{z}}(x) - [\underline{m_{\boldsymbol{z}}(x,t) - m_{\boldsymbol{0}}(x)}]\boldsymbol{\hat{z}} - [\underline{m_{\boldsymbol{x}}}\boldsymbol{\hat{x}} + \underline{m_{\boldsymbol{y}}}\boldsymbol{\hat{y}}]$ T1

T2: Loss of Phase of Voxel Packets in the xy-Plane

#3:
$$m_{xy}(t) / m_{xy}(0) = e^{-t/T^2}$$

Typical T1 and T2 Relaxation Timesrelaxation rates: $1/T2 \sim 10 \times (1/T1)$

Tissue	PD p ⁺ /mm ³ , rel.	T1, 1T (ms)	T1, 1.5T (ms)	T1, <i>3T</i> (ms)	T2 (ms)
pure H ₂ 0	1	4000		4000	4000
brain CSF	0.05	2500	2500	2500	200
white matter	0.93	700	800 ²³⁰⁰	2300 850	200 90
gray matter edema	0.7	800	900 1100	1300	100 110
glioma		930	1000		110
liver			500		40
hepatoma			1100		85
muscle	0.9	700	900	1800	45
adipose	0.95	240	260		60

One Last Member of the Spin-Relaxation Family Tree: T2*

