90Y-Microsphere Therapy: Emerging Trends and Future Directions

Matt Vanderhoek
Department of Radiology
Henry Ford Health System
Detroit, Michigan

Manufacturer’s Instructions

<table>
<thead>
<tr>
<th>Theramine®</th>
<th>SIR-Spheres®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics</td>
<td>-25 μm glass, -2500 Bq/sphere</td>
</tr>
<tr>
<td>Indication for use</td>
<td>Hepatocellular carcinoma, Liver metastases from primary colorectal cancer</td>
</tr>
<tr>
<td>Contraindications</td>
<td>Severe liver dysfunction, extrahepatic deposition, high bilirubin, low albumin, portal vein occlusion, Clinical liver failure, extrahepatic deposition, high bilirubin, low albumin, portal vein thrombosis</td>
</tr>
<tr>
<td>Lung limits</td>
<td>30 Gy</td>
</tr>
<tr>
<td>Dose range</td>
<td>80 – 150 Gy</td>
</tr>
<tr>
<td>Activity (GBq) to treat liver lobe</td>
<td>Typically less than 80 Gy</td>
</tr>
</tbody>
</table>

Pre-treatment Measurements

SIR-Spheres® TheraSphere® Dose Calibrator
Treatment Setup and Delivery

Treatment Cart
- Delivery device
- Waste container
- Tube fill in lead pot

Treatment Delivery
- Delivery device
- Hub
- Outlet tubing
- Absorbent sheet
- Dose vial in lead pot

Post-administration

- Dose-vial, tubing, drapes are transferred to waste container
- Survey staff, cart, and procedure room for contamination
- SIR-Spheres® – assay vial in dose calibrator
- TheraSphere® – exposure rate of residual in waste container

TheraSphere® – Dose Delivery Efficiency

- **Pre-treatment**
- **Post-treatment**

Delivery Efficiency = (1 – Post/Pre) * 100%
Decay in storage

- 1 month - ten 90Y half-lives
- TheraSphere® – small amounts of long-lived radioactive by-products (90Y)

Radiation Safety

- 90Y is β^- emitter
 - Half-life: 2.7 days
 - $E_{\beta^-} = 0.93$ MeV, $E_{\beta^-}^{\max} = 2.3$ MeV
 - Range in water: 2.5 mm (mean), 11 mm (max)
 - Bremsstrahlung
- Typical patient exposure rates
 - Max surface: 5 – 25 mR/h
 - 1 meter: 0.1 – 0.3 mR/h
- NRC – no release criteria or restrictions

Pre-treatment angiography
Pre-treatment 99mTc-MAA Scan

Planar Image

SPECT/CT

Standard Model

\[A_{\text{Total}} = A_{\text{Liver}} + A_{\text{Lung}} \]

\[LSF = \frac{\text{Lung counts}}{\text{Lung counts} + \text{Liver counts}} \]

\[D_{\text{Lung}} = \left(\frac{50}{M_{\text{Lung}}} \right) \frac{A_{\text{Lung}}}{A_{\text{Total}} \times (1 - LSF)} \]

\[D_{\text{Liver}} = \left(\frac{50}{M_{\text{Liver}}} \right) \frac{A_{\text{Liver}}}{A_{\text{Total}} \times (1 - LSF)} \]

Standard Model

- Average liver dose
- Within recommended dose range
- What about….?
 - Heterogeneous uptake distribution?
 - Tumor dose?
 - Normal tissue dose?

\[D_{\text{Lobe}} = 120 \text{ Gy} \]
Partition Model

\[D_{\text{Liver}} M_{\text{Liver}} = D_{\text{Tumor}} M_{\text{Tumor}} + D_{\text{Normal}} M_{\text{Normal}} \]

\[D_{\text{Tumor}} = \left(\frac{T}{N} \right) D_{\text{Normal}} \]

\[\left(\frac{T}{N} \right) = \frac{\text{Tumor activity conc}}{\text{Normal tissue activity conc.}} \]

\[D_{\text{Tumor}} = \left(\frac{T}{N} - 1 \right) \frac{D_{\text{Liver}} M_{\text{Liver}}}{M_{\text{Tumor}} M_{\text{Liver}}} + 1 \]

\[T = \text{Tumor activity conc.} \]

\[N = \text{Normal tissue activity conc.} \]

Tumor Delineation

CT

MR

C-arm CBCT

99mTc-MAA SPECT/CT
IR/NM Collaboration

IR Physician

NM Physician

T/N Uptake Ratio (Vascularity Ratio)

- Obtain via threshold of MAA SPECT data
- Determine tumor and normal tissue uptake conc.
- T/N = 5

99mTc-MAA SPECT/CT

Dosimetry depends on model

<table>
<thead>
<tr>
<th>Method</th>
<th>Total Activity</th>
<th>Liver Lobe</th>
<th>Tumor</th>
<th>Normal Tissue</th>
<th>Lung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>4.5 GBq</td>
<td>130 Gy</td>
<td>?</td>
<td>22 Gy</td>
<td>?</td>
</tr>
<tr>
<td>Partition*</td>
<td>3.0 GBq</td>
<td>86 Gy</td>
<td>204 Gy</td>
<td>68 Gy</td>
<td>15 Gy</td>
</tr>
<tr>
<td>Partition</td>
<td>2.2 GBq</td>
<td>63 Gy</td>
<td>205 Gy</td>
<td>41 Gy</td>
<td>11 Gy</td>
</tr>
</tbody>
</table>

\[D_{\text{Tumor}} = T \cdot N \cdot D_{\text{Liver Lobe}} - T \cdot N - 1 \cdot M_{\text{Tumor}} + 1 \]

\[D_{\text{Liver Lobe}} = 50 \text{ GBq} \times A_{\text{Total}} \times (1 - LSF) \]

Dosimetry depends on model

*Assume T/N = 3

99mTc-MAA SPECT/CT

Dosimetry depends on model

<table>
<thead>
<tr>
<th>Method</th>
<th>Total Activity</th>
<th>Liver Lobe</th>
<th>Tumor</th>
<th>Normal Tissue</th>
<th>Lung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>4.5 GBq</td>
<td>130 Gy</td>
<td>?</td>
<td>22 Gy</td>
<td>?</td>
</tr>
<tr>
<td>Partition*</td>
<td>3.0 GBq</td>
<td>86 Gy</td>
<td>204 Gy</td>
<td>68 Gy</td>
<td>15 Gy</td>
</tr>
<tr>
<td>Partition</td>
<td>2.2 GBq</td>
<td>63 Gy</td>
<td>205 Gy</td>
<td>41 Gy</td>
<td>11 Gy</td>
</tr>
</tbody>
</table>

\[D_{\text{Tumor}} = T \cdot N \cdot D_{\text{Liver Lobe}} - T \cdot N - 1 \cdot M_{\text{Tumor}} + 1 \]

\[D_{\text{Liver Lobe}} = 50 \text{ GBq} \times A_{\text{Total}} \times (1 - LSF) \]

Dosimetry depends on model

*Assume T/N = 3

99mTc-MAA SPECT/CT
Radiation Segmentectomy

- Very high dose to isolated segment(s)
- Ablation
- 360 Gy to segments 5 & 8
- Small volume
 - Relatively low A_{Total}
 - Limited lung dose – 8 Gy

Conclusion

Thank you
Example

- Volumes: A/B = 2
- Lung Shunt Fraction
 - Measured: 20%
 - Assume:
 - LSF_A = 20%
 - LSF_B = 20%
 - What if:
 - LSF_A = 40%
 - LSF_B = 0%

Dosimetry – Partition Model

\[A_{Total} = A_{Lobe} + A_{Lung} \]
\[D_{Lung} = \frac{(50 \text{ J/GBq}) \times A_{Total} \times (LSF)}{M_{Lung}} \]
\[D_{Lobe} = \frac{(50 \text{ J/GBq}) \times A_{Total} \times (1-LSF)}{M_{Lobe}} \]
\[D_{Tumor} = \frac{1}{\alpha} \times D_{Normal} \]
\[D_{Lobe}M_{Lobe} = D_{Tumor}M_{Tumor} + D_{Normal}M_{Normal} \]
Dosimetry: Tumor and Normal Tissue

- SIR Spheres therapy doses are based on activity (not target radiation dose) – maximum activity of 81 mcC
- Empirical dosimetry models
 - Brain: Activity based on maximal activity & tumor fraction
 - SMA: Activity based on IDA & tumor fraction in 24h
 - Lung Stent modification: Recurrence for L > 20%
- Average liver dose < 80 Gy and lung dose < 25 Gy