SAM session : TH-AB-702-3

Components of a standard and a procedure for evaluation of PET-AS methods

Assen S Kirov, Ph.D. Department of Medical Physics Memorial Sloan-Kettering Cancer Center New York

Disclosure: No conflict of interest

Objectives

I. Introduction of an evaluation standard

- components
- performance criteria

II. Discussion of the limitations and dependencies of the PET segmentation process

III. Acceptance and implementation of PET auto-segmentation algorithms

Evaluation criteria for segmentation algorithms

- Accuracy
- Precision
- Efficiency

Udupa *et al,* A framework for evaluation of image segmentation algorithms, Computerized Medical Imaging and Graphics, 30, (2006) 75-87

Robustness

Hatt *et al*, 2011, 'PET functional volume delineation: a robustness and repeatability study', *Eur J Nucl Med Mol Imaging*, vol. 38, no. 4, pp. 663-72.

- (a) The avid volume in the PET image
- (b) The activity distribution
- (c) The biological quantity of interest

Benchmark Image sets: A. Phantoms 1. Simple

Advantages:

- Exact representation of the scanner resolution, image noise and other image artifacts
- Ground truth accurately known
- Easy to generate and use

Disadvantages:

- The objects have simplistic and unrealistic shape and activity distribution
- Most with few exceptions have cold walls

Benchmark Image sets: A. Phantoms 2. Realistic

Advantages:

- Exact representation of the scanner resolution, image noise and other image artifacts
- Capable to produce lesion shapes corresponding to actual tumors
- Known ground truth

Disadvantages:

- Difficult to generate inhomogeneous activity
- Labor intensive
- Experimental uncertainties

Benchmark Image sets: B. Simulated Phantoms 1. Forward Projected images

Advantages:

- Flexibility in phantom design
- Precise knowledge of the reference object
- Computationally cheap

Disadvantages:

- Scatter count distributions and noise are usually less accurately modeled
- Detailed physics and system information ignored

Benchmark Image sets: B. Simulated Phantoms 1. Monte Carlo

Advantages:

- Realistic count distributions
- Precise knowledge of the reference object
- Scanner-specific information

Disadvantages:

- Computationally expensive
- Model requires extensive up front experience

Benchmark Image sets: C. Clinical images

Advantages:

- Exact representation of the scanner resolution, image noise and other image artifacts

- Real activity distributions

Disadvantages:

- Uncertainties in the knowledge of the reference object, even with histopathology reference

Comparison	of Cont	our	Evalua	tion M	etrics
Evaluation criteria	Location	Size	Shape	FN,FP	Complexity
Volume difference	no	yes	no	no	+
Barycenter distance	yes	no	no	no	++
Jaccard similarity coefficient	yes	yes	yes	no	++
Dice similarity coefficient (DSC)	yes	yes	yes	no	++
Hausdorff distance	yes	no	yes	no	+++
Sensitivity + Positive Predictive Value (PPV)	yes	yes	yes	yes	++

Uncertainties in PET Segmentation

- A. Uncertainties in the PET image
- Boellaard, JNM 2009: technical (specification, administration, time) physical (detection physics, reconstruction) biological (glucose level, inflammation, comfort) tumor heterogeneity B. Inaccuracies of auto-segmentation

- C. Dependence on: scanner and protocol tracer type and isotope lesion type and body site segmentation task

Segmentation requirements: Dependence on the task

Radiation therapy:

- 1. Target definition
 - a) Tumor delineation
 - b) "Dose painting"
 - aggressive region
 - -"by numbers"
- 2. Treatment assessment
 - a) by changes in volume
 - b) by uptake changes in segmented vol.

How to evaluate a PET segmentation tool					
Step	1. Vendor acceptance	2. Basic	3. Phase II	4. Phase III	5. Impact
Objective	Proper functioning of software	Accuracy, Repeatability Robustness	ARR -> realistic shapes and uptake	ARR -> clinical images	Evaluation of clinical impact
Datasets	Vendor	Simple uniform, objects repeated	Irregular shape, non- uniform phantoms no cold wall	Clinical images	Clinical images, treatment plans and follow-up
Ground truth	Vendor	СТ	High res. CT or digital voxel level accuracy.	Digitized histopathology and/or manual delineations	Treatment outcome data
Metrics	Vendor	Volume errors, DSC	DSC, Sensitivity, PPV, HD	DSC, Sensitivity, PPV, HD, Statistical	Outcome

Evaluation of PET Auto Segmentation: Summary

I. The evaluation standard:

Criteria: Accuracy, Precision, Robustness, Efficiency *Image sets:* Different Phantoms and Clinical images *Figures of merit:* Sensitivity, PPV, Hausdorff distance

II. Acceptance and evaluation

Multistep: Vendor, Basic, Realistic, Impact

III. PET Segmentation Limitations

Biological phenomena – heterogeneity Dependencies – scanner, protocol, tracer, motion Physician review and editing is imperative

Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211

Med. Phys. 2017 online

Mathieu Hatt	Michael P. MacManus
INSERM, UMR 1101, LaTIM, University of Brest, IBSAM, Brest, Fr	Peter MacCallum Cancer Centre, Melbourne, Australia
John A. Lee	Osama R. Mawlawi
Université catholique de Louvain (IREC/MIRO) & FNRS, Brussels	MD Anderson Cancer Center, Houston, TX 77030, USA
Charles R. Schmidtlein	Ursula Nestle
Memorial Sloan Kettering Cancer Center, New York, NY 10065, U.	Universitätsklinikum Freiburg, Freiburg 79106, Germany
Issam El Naqa	Andrei B. Pugachev
University of Michigan, Ann Arbor, MI 48103, USA	University of Texas Southwestern Medical Center, Dallas, TX
Curtis Caldwell	Heiko Schöder
Sunnybrook Health Sciences Center, Toronto, ON M4N 3M5, Cana	Memorial Sloan Kettering Cancer Center, New York, NY 100
Elisabetta De Bernardi	Tony Shepherd
University of Milano-Bicocca, Monza, Italy	Turku University Hospital, Turku 20521, Finland
Wei Lu	Emiliano Spezi
Memorial Sloan Kettering Cancer Center, New York, NY 10065, U.	School of Engineering, Cardiff University, Cardiff, Wales, Ur
Shiva Das	Dimitris Visvikis
University of North Carolina, Chapel Hill, NC 27599, USA	INSERM, UMR 1101, LaTIM, University of Brest, IBSAM, Br
Xavier Geets and Vincent Gregoire	Habib Zaidi
Université catholique de Louvain (IREC/MIRO) & FNRS, Brussels	Geneva University Hospital, Geneva CH-1211, Switzerland
Robert Jeraj	Assen S. Kirov ^{a)}
University of Wisconsin, Madison, WI 53705, USA	Memorial Sloan Kettering Cancer Center, New York, NY 100