SAM session

Design, implementation and first results of the future standard for evaluation of PET-AS methods

Emiliano Spezi, Ph.D. School of Engineering Cardiff University United Kingdom

This presentation is based on the paper "Toward a standard for the evaluation of PET-Auto-Segmentation methods following the recommendations of AAPM task group No. 211: Requirements and implementation" which was recently published in Medical physics.

The paper is open access.

Background

PET imaging important tool in radiation oncology.

Patient staging, prognosis, radiation therapy planning, therapy monitoring, and detection/prediction of recurrences or metastatic disease $% \left({{{\rm{p}}_{{\rm{s}}}}} \right)$

Accurate delineation and reliable PET segmentation methods. The need for reliable PET-auto-segmentation (PET-AS) methods has been widely expressed

Reliable technique for routine clinical PET-AS?

There is currently no established agreement on the most reliable PET-AS technique

How to assess PET-AS algorithms?

The development of a standard benchmark has been recognised by many including AAPM TG211

Objectives

- Review (a) requirements, (b) design and (c) implementation of a benchmark tool for the evaluation and the validation of PET-AS algorithms (PETASset)
- 2. Show the analysis and report tools available in PETAsset
- 3. Discuss future developments of the benchmark

Standard requirements

Standard requirements Usability and accessibility

Easy to use and learn: intuitive GUI

Comprehensive documentation

Accessible to the public

Extendable

Standard requirements Types of Reference Contours

Absolute truth: only available for simulated images.

Single best estimate: surrogate of truth provided for physical phantom images and in the special case of patient images for which histopathology data are available.

Multiple equally best estimates: consensus manual expert delineations when no single delineation can be considered to be the best.

Kirov AS, Fanchon LM. Pathology-validated PET image data sets and their role in PET segmentation. Clin Transl Imaging. 2014;2:253-267.

Standard requirements Categories of accuracy metrics

Level I: metrics that assess the agreement in terms of volumetric properties such as the number of voxels in the VOI and the statistics of PET signal integrated over that volume.

Level II: metrics that quantify the geometric agreement including spatial matching between a particular PET- AS contour and the RC.

Level III: metrics that evaluate the clinical relevance of the disagreement between PET-AS contours and RCs.

Standard requirements Robustness

Across datasets: governed by differences in anatomy and physiology

Within a dataset: resulting from differences in tumour volume shape & size between different patients

Within an image: according to differences in image reconstruction and noise levels across different realisations of that image

egies of auto-segme

ation approaches for PET: report of AAPM Task Group No. 211. Med Phys. 2017;44:e1-e42

tein CR, et al. Classifica

let M, Lee J, Schr

Implementation of requirements

PETASset Platform

CERR: Computational Environment for Radiotherapy Research

PETASset Package structure and content

Benchmark

PETASset Data Images and reference contours

Dataset	Reference	Center	Data type	Anatomical region	Number of studies	Number of series/study	Number of structures/ series	Reference contour	CT data	Additional features
UCLPTLU	Wanet et al. ¹¹	Université catholique	Patient	Lung	10	2	1	Specimen	Yes	2 voiel sizes/PET scan
UCLPTHN	Daisne et al. ¹²	de Louvain	Patient	H&N	7	1	1	Specimen	No	
MILPPAB	Zito et al. ¹³	Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico	Phantom	Lung & Pelvis	11	6	1	СТ	No	Different acquisition instances
BRENPHN	Hatt et al. ¹⁴	LaTIM, INSERM	Phantom	H&N	6	1	1	Simulation	No	Heterogeneous (2 RC contours)
BRENPLU			Phantom	Lung	2	1	1	Simulation	No	Heterogeneous (2 RC contours)
SIMPTLU	Berthon et al. ⁵⁶	MSKCC/ Cardiff University	Patient	Lung	10	5	1	Simulation	No	5 RC geometries/ 2 reconstructions/ 5 acquisition instances
SIMPTHN			Patient	H&N	10	5	1	Simulation	No	5 RC geometries/ 2 reconstructions/ 5 acquisition instances
SIMPTAB			Patient	Pelvis	10 66	5	1	Simulation	No	5 RC geometries/ 2 reconstructions/ 5 acquisition instances

an algori

Daisne J-F, Sibomana M, Bol A sured source+ WanetM, Lee JA, Weynand B, with thres

and B, et al. Gradient-based delineation of the primary GTV on FDG-PET in non-

UCL Lung, 10 different CT and PET scans each with 2 voxel sizes/PET scans.

Files: UCLPTLU_01.mat.bz2 - UCLPTLU_02.mat.bz2 - UCLPTLU_03.mat.bz2 - UCLPTLU_04.mat.bz2 - UCLPTLU_05.mat.bz2 - UCLPTLU_06.mat.bz2 - UCLPTLU_07.mat.bz2 - UCLPTLU_08.mat.bz2 - UCLPTLU_09.mat.bz2 - UCLPTLU_10.mat.bz2

n with threes

hes CT an

PETASset Data Tumour shaped phantoms

Milan physical body phantom with Zeolites, 11 different studies each with 6 different scans (acquisitions).

PET scan 1	PET scan 2	PET scan 3	PET scan 4	PET scan 5	PET scan 6
3	3	0	3	3	3
G	G	A	6	G	C.

Files: MILPPAB_01.mat.bz2 - MILPPAB_02.mat.bz2 - MILPPAB_03.mat.bz2 - MILPPAB_04.mat.bz2 - MILPPAB_05.mat.bz2 - MILPPAB_06.mat.bz2 - MILPPAB_07.mat.bz2 - MILPPAB_08.mat.bz2 - MILPPAB_09.mat.bz2 - MILPPAB_10.mat.bz2 - MILPPAB_11.mat.bz2

Zito F. De Bernardi E. Soffientini C. et al. The use of

PETASset Data

Simulated

PETASset Data

Simulated

INSERM Brest. Numerical phantom, 6 H&N and 2 lung studies to simulate heterogeneous tracer uptake.

Lung files: BRENPLU_01.mat.bz2 - BRENPLU_02.mat.bz2 H&N files: BRENPHN_01.mat.bz2 - BRENPHN_02.mat.bz2 - BRENPHN_03.mat.bz2 - BRENPHN_04.mat.bz2 - BRENPHN_05.mat.bz2 - BRENPHN_06.mat.bz2 Mat.X. Control Date: C. Descort / and Acada acrossic distantiant Amatematic Science and Acada acrossic distantiant Amatematic Science and Acada acrossic distantiant Amatematic Science acrossic di Science acrossic distanti Science acrossic distantiant Amatemat

6

PETASset Code Workflow

PETASset Code Segmentation

Segmentation

• • •		VDI Segm	entation tool	
	Segmentation			
Scan	PET 📑			
V01	arv 📴	Terandi	Cursnai	Sachta
Algorithm	Ze Use My Apothen Final Thresholing Report Genering Restricted Counting Read Thresholing			
Initialization	Restin Freedood Exhapter Treedood			
			and the second sec	
		4 1		
				U .

PETASset Code Segmentation

	VDI Se	gmentation tool	
Segmentation			
Scan H11			
VOI OTV	Tursonia	Germal	Lected
Algarithm Prior Transcore Prior Scott 1 - Classical Control of Classica	\sim		
Threshold			
Absolute 0 80 128		4 4 4	-
Appy Sev Rent	Your last 1 segmentations	velateliter- Narobet PEPMan, Felifice (PI), Alexit in H (F)	
			0.4

PETASset Code Segmentation

PETASset Code Segmentation

PETASset Code

Segmentati	on exte	naea
function Black also the Mama nanamaterNamas nanamaterNahaslo ViceRenmentationAlm or concerning commence operations.	within DFT&Reat/R-anNew Row1	
% This is a temptate for custom segmentation algorithm implementation into % the BM % NBs: The arguments to this scriptane: % - Soun No % - soun No		 Bounding box (e.g. from initialisation)
% Author: B. Berthon % email: BerthonB @cardiff.ac.uk	Number of	the
% BEGINCODE	scan to pro	cess
if -exist(planC) plobal planC end indexS = planC(end);		
% Image corresponding to the whole scan ImagerplanC(indexS.scan((ScanNum).scanAmay;		
% Image to segment (cropping the scan around the situature to delineate) clmage=Image(Box(1):Box(2);Box(3):Box(4);Box(5):Box(6));	Add name of	
algorithmName=/Name of your method; % please replace	algorithm here	
	325	
% year code/bee % report cimage (scien copped asound the structure to delineate) % output % output a structure years (in the structure, 0 outside); the same size as cimage % - structure of optimisers, cell among of animage with the names of parameters used, e.g. (para % - parameter/structure, structure, output); (parameters used, e.g. (para % - parameter/structure, structure, output); (parameters used, e.g. (para % - parameter/structure, structure, output); (parameters used, e.g. (parameters); (par	naber1', parameter2',}	Add code that — outputs cMask and parameters
	325	·
% returning Mask from cMask		

PETASset Code Analysis

Level I metrics are used to provide basic and essential information on the delineated VOI (a) Volume, (b) Mean uptake value, (c) Maximum update value, (d) Centre of mass

Level II metrics are used to quantify the similarity between the PET-AS contour and the RC.

$DSC (A,B) = \frac{2 \times A \cap B }{ A + B },$	range [0, 1]
$S = \frac{ A \cap B }{ A }$, range [0, 1]	$\begin{split} HD &= \max\left(\frac{1}{N_A}\sum_i \textit{min}_j \ a_i - b_j\ , \frac{1}{N_B}\sum_i \textit{min}_j \ b_i - a_j\ \right), \\ \text{range} \ [0, +\infty) \end{split}$
$PPV = \frac{ A \cap B }{ B }$, range [0, 1]	$DUV = (A \cup B) - (A \cap B), \text{ range } [0, +\infty)$

PETASset Code Level I Analysis

PETASset Code

Level II Analysis

Lovel II. Analysis	>> pa	anC(Index5.structures)(2).anai	ysisii	
Behast Amatoria	ans = struc	ct with fields:		
Complex angles or admit discuss General angles COLONE angles C	nature utilitie	DSC: [1x1 struct] S: [1x1 struct] PPV: [1x1 struct] HD: [1x1 struct] DU: [1x1 struct] ferenceStructureType: 'Simular	ion template'	
8 ~	s a bite of results The analysis Do at Ref	anC(indexS.structures)(2).anal ct with fields: Name: 'Dice Similarity Value: 0.8468 referenceStructindex: '1'	ysisILDSC Coefficient'	
	Rel	ferenceStructureName: 'GTV'		
• • •	Fi	igure 3: Results of Analysis II		
File Edit View Insert Te	ools Desktop Window	v Help		
🗅 😂 🖬 💩 💊 🔍 🔇) 🗊 🥷 🆌 🔍 🔳	E = 🗆		
Dice	Sensitivity Positive Predict	tive Value Hausdorff Distance (cm) Delineation Uncertainty (cm)	
GTV (PET) 1	1	1	0 0	
T70 (PET) 0.8468	0.7491	0.9738 0	.1317 0.3570	
T60 (PET) 0.7821	0.9029	0.5898 0	1695 0.3570	
T50 (PET) 0.8626	0.9622	0.5053 0	2917 0.3570	
T40 (PET) 0.5612	0.9796	0.3932 0	4079 0.3570	
SC (PET) 0.7216	0.6961	0.7490 0	2062 0.3570	

Local Report: designed to summarise the performance of PET-AS methods for a single study and a selection of metrics. The structured report contains

(i) PETASset analysis details

(ii) Level I analysis

(iii) Level II analysis

PETASset Code Local report example

PETASset Code Local report example

10000 077 1.000 700 0.000 100 0.000 100 0.000 100 0.000 100 0.000 100 0.000

PETASset Code Global report

Global Report: designed to include the performance of PET-AS methods across several cases.

	Level I Absolute metric error (% RC)				Level II			
Method	Volume	Max SUV	Mean SUV	DSC	S	PPV	HD (cm)	
FLAB	27 ± 15	3.0 ± 12	6.3 ± 11	0.74 ± 0.07	0.69 ± 0.09	0.82 ± 0.09	0.25 ± 0.16	
GMM	21 ± 25	5.0 ± 11	0.21 ± 10	0.76 ± 0.08	0.77 ± 0.08	0.78 ± 0.09	0.17 ± 0.12	
FT50	60 ± 37	0.89 ± 11	3.7 ± 35	0.53 ± 0.08	0.43 ± 0.11	0.91 ± 0.10	0.30 ± 0.08	
FT42	61 ± 70	0.36 ± 9.8	15 ± 20	0.64 ± 0.07	0.56 ± 0.09	0.88 ± 0.09	0.24 ± 0.08	
RG	42 ± 21	0.18 ± 12	11 ± 18	0.68 ± 0.07	0.62 ± 0.10	0.85 ± 0.11	0.23 ± 0.10	
KM	70 ± 163	2.7 ± 11	11 ± 58	0.73 ± 0.10	0.85 ± 0.05	0.69 ± 0.13	0.27 ± 0.20	
GCM	39 ± 13	0.98 ± 9.6	9.0 ± 17	0.70 ± 0.06	0.65 ± 0.09	0.83 ± 0.09	0.19 ± 0.05	
WT	42 ± 26	2.5 ± 11	3.3 ± 18	0.67 ± 0.07	0.63 ± 0.11	0.79 ± 0.10	0.22 ± 0.08	
Range	21/70	0.18/5.00	0.21/15	0.53/0.76	0.43/0.85	0.69/0.91	0.17/0.30	
Median (SD)	42 (± 17)	$1.7 (\pm 1.6)$	7.7 (± 4.9)	0.69 (± 0.07)	0.64 (± 0.13)	0.83 (± 0.07)	0.24 (± 0.04	
Agreement limits (example)	(0,59)	(0,3.3)	(0,12.6)	(0.62,1)	(0.51,1)	(0.76,1)	(0, 0.28)	

Conclusions

PETASset was designed and built following AAPM TG211 report which identified the need for developing a standard evaluation framework designed for the assessment of PET-AS algorithms.

PETASset includes a shared database of reference images and contours used in published articles. We expect this database to grow over time.

PETASset allows users to evaluate segmentation methods by either importing segmentation contours produced by external applications, or by coding a new segmentation method in the benchmark platform.

Future work includes the design and implementation of metrics to evaluate the clinical implications of contour accuracy in radiotherapy treatment planning (Level III Analysis).

Acknowledgments

AAPM TG211 members

http://www.aapm.org/org/structure/default.asp?committee_code=TG211

This work was supported in part through NIH/NCI grant R01CA172638 (WL) and NIH/NCI Cancer Center Support grant P30 CA008748 (CRS, WL, ASK). BB and ES acknowledge support from Cancer Research Wales grant No. 7061 and 2476. HZ acknowledges support from the Swiss National Science Foundation under grant SNFN 31003A-149957 and the Swiss Cancer Research Foundation under grant KFS-3855-02-2016. JAL is a Research Associate with the Belgian F.R.S.-FNRS.

The work on this report was funded in part by the American Association of Physicists in Medicine.