Montefiore

Immune Priming with Ultrasound

Chandan Guha, MBBS, PhD

Professor and Vice Chair, Radiation Oncology Professor, Urology and Pathology Director, Eristein Institute of Onco-Physics Montefiore Medical Center Albert Einstein College of Medicine, Bronx, NY cguhamd@gmail.com Conflicts and Grants - NIH (R01 EB009040) - NCI SBIR grant with Celldex Therapeutics, Inc. - Project Energy with Johnson & Johnson

Tumor Evolution

Cooption (Macrophage, Ectopic Lymphoid structure)

<u>F</u>ocal <u>O</u>ncology <u>C</u>linical <u>A</u>daptive <u>L</u>earning (FOCAL) Cancer Clinic Network

- 1. Ablative Therapies for local control induces anti-tumoral immunity, which in turn helps local control.
- 2. Ablative Therapies for systemic immunity: Immune Priming Ablation (IPA) for In Situ Tumor Vaccines a. UPR => ER stress => Antigen Processing / Presentation
 - b. "Eat Me" and DAMP signals
 - c. Reversal of tolerance
 - d. Antigen Presentation (neo-antigens & cryptic antigens)

"Focal Therapy for Systemic Cure"

Project ENERGY.01: Proposed Study Design

Autologous in situ tumor vaccines

(CANCER RESEARCH 59, 6028-6032, December 15, 1999)

Advances in Brief

Flt3-Ligand Administration after Radiation Therapy Prolongs Survival in a Murine Model of Metastatic Lung Cancer

Prabir K. Chakravarty, Alan Alfieri, Elaine K. Thomas, Vivek Beri, Kathryn E. Tanaka, Bhadrasain Vikram, and Chandan Guha¹

- Departments of Radiation Oncology [P. K. C., A.A., V. B., B. Y., C. G.] and Pathology [E. K. T., K. E. T.], Albert Eistechi Gallege of Medicine, Monoflore Medical Center, Boxet, New York 1069; Berk Invest Medical Center, New York, New York 10007 [A.A.]; and Invance: Corporation, Scattle, Washington 80101 [E. K. T. K. E. T.]

RT + Flt3L Improves Survival of Tumor-bearing C57BI/6 Mice

C57Bl/6 mice (RT+Flt3L - 55% cured)

> Immunodeficient Nude mice (RT+Flt3L - 0% cured)

Systemic Effects of Primary Tumor Irradiation

FLT3 Ligand Immunotherapy and Stereotactic Radiotherapy for Advanced Non-small Cell Lung Cancer

- · SBRT will be administered during the first week of study therapy.
- A single pulmonary lesion that measures at least 1 cm in greatest dimension will be treated.
- Daily subcutaneous injections of CDX-301 (75 µg/kg) will be administered for 5 days, beginning on the first day of SBRT.

	Pre-rx	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Weeks 16, 24, 32
Stereotactic Radiotherapy (SBRT)		XXX								
FLT3 Ligand Therapy		XXXXXX								
History and Physical Examination	X	X	X	X	X		Х		Х	х
Blood Tests: CBC, CMP	X	X	x	X	X		X		x	x
Whole body PET/CT	X								х	x
Immune Correlates	Х		X		X				х	
		Sa	mple	size: 2	29 pat	ients				

4.3 Primary Endpoint

 The primary endpoint is progression-free survival rate at four months (PFS4), defined as the rate estimate of the percentage of patients who are alive and progression-free at 16 weeks (-4 months) after initiation of study therapy.

FLT3 Ligand Immunotherapy and Stereotactic Radiotherapy for Advanced Non-small Cell Lung Cancer

Nitin Ohri

- SBRT will be administered during the first week of study therapy. •
- A single pulmonary lesion that measures at least 1 cm in greatest dimension will be treated.
- Daily subcutaneous injections of CDX-301 (75 $\mu g/kg)$ will be administered for 5 days, beginning on the first day of SBRT.

	Pre-rx	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Weeks 16, 24, 32
Stereotactic Radiotherapy (SBRT)		XXX								
FLT3 Ligand Therapy		XXXXX								
History and Physical Examination	X	X	Х	х	Х		Х		х	X
Blood Tests: CBC, CMP	×	X	X	X	X		X		X	X
Whole body PET/CT	X								x	x
Immune Correlates	X		х		X				х	
Sample size: 29 patients										

Ablative SBRT dose fractionation

- 34 Gy x 1 Fx
 18 Gy x 3 Fx
 10 Gy x 5 Fx

Study Subjects

1	73 year-old Korean male	Right lung squamous cell carcinoma with multiple lung masses and bilateral mediastinal adenopathy	Carboplatin + gemcitabine	50 Gy in 5 fractions to RLL mass	Progression at 6 weeks, death at 4 months
2	55 year-old Hispanic female	Right lung adenocarcinoma, with bilateral lung nodules	Chemoradiotherapy for localized disease, nivolumab for metastatic disease	34 Gy in 1 fraction to LUL nodule	Partial response at 2 months, stable at 4 months
3	80 year-old Caucasian female	Right lung squamous cell carcinoma with spine and pelvic metastases	Chemoradiotherapy for localized disease, carboplatin + gemcitabine for metastatic disease, nivolumab	50 Gy in 5 fractions to right lung mass	Partial response at 2 months
4	73 year-old Caucasian female	Right lung adenocarcinoma with mediastinal adenopathy and liver metastasis	Carboplatin/ + pemetrexed, maintenance pemetrexed	50 Gy in 5 fractions to RLL mass	PET/CT on 4/27

Patient 2

Right lung mass reduced from 5.0 cm (maximum SUV 10.7) to 2.1 cm (maximum SUV 6.5) on first posttreatment PET/CT Target Lesion Total Glycolytic Activity (TGA): 1.0 cc → 0.3 cc Other lesions' TGA: 44.7 cc \rightarrow 4.5 cc

Patient 3

Target Lesion Total Glycolytic Activity (TGA): 49.1 cc → 6.2 cc

Target Lesion Total Glycolytic Activity (TGA): 49.1 cc → 6.2 cc

POC Studies											
				Limitation							
Single Fraction SFRT 25-60 Gy	Flt3L + / - CD40L	 Lewis Lung 3LL in C57/BI6 BN1LNE Liver (HCC) in Balb/c 	 Primary Tumor Growth Metastases Survival Immune assays 	Murine Ectopic Transplantation Models RT Dose Eractionation							
20 Gy	TLR9 agonist	 Lewis Lung 3LL in C57/BI6 	PTG, Mets, Survival	 RT to Draining Lymph Node 							
10 Gy	Listeria- PSA ADXS31- 142	TRAMPC1 TPSA23 Prostate Cancer	PTG and Immune Assays	Break Tolerance to self antigens							
20Gy x 3	PD1-Fc	 Lewis Lung 3LL in C57/BI6 	PTG, Mets, Survival	Treatment							
LOFU	HIFU	TPSA23 Prostate	PTG, Immune Assays	Lack of Immune Surveillance and							
LOFU	SBRT (10 Gy x 3)	B16 Melanoma	PTG, Mets, Survival Immune Assavs	carcinogenic environment							

Energy activated in situ Tumor Vaccines

Acoustic priming

ULTRASOUND -- ADVANTAGES

HIFU directed harmlessly across skin and rectum toward the tumor

Therapeutic Ultrasound as an autologous in situ tumor vaccine

- HIFU = High Intensity Focused Ultrasound
- MRgFUS = MR-guided Focused Ultrasound
- TULSA = Transurethral ultrasound ablation
- LOFU = Low intensity (energy) focused ultrasound (LOFU coined by Guha group)
- SST = Sonic Stress Therapy
- APT Acoustic Priming Therapy

	Condition #1	Condition #2	Condition #3	Condition #4	Condition #5
Duty Cycle (%)	1	25	50	75	100
Power (W)	32	16	8	4	2
Time (ms)	1000	625	1250	2500	5000
Thermal Energy (J)	0.32	2.5	5	7.5	10
Peak Negative Pressure (MPa)	8.14	6.08	4.58	3.34	2.46
Thermal Energy					
Mechanical Energy					

LOFU parameters

The "sonic stress" of LOFU

Gene function	Genes affected by LOFU treatment
1. Protein Folding	DNAJB1, HSPH1, HSPE1, HSPB1, HSPD1, HSPA4L, CRYAB, HSPA6, HSPA7, HSP90AA1, HSP90AA4P, DNAJA4, FKBP4, LGSN, PTGES3
2. Cell cycle regulation	IER5, JUN,CACYBP, GPRC5A, RRAD, WEE2
3. Cytokines	IL8
4. Receptors	CSF2RB, IL7R, NPR1, RXFP2, FLT4, ITGA2
5. Cytoskeleton integrity	FAM101B, TCP1
6. Transcriptions	ATF3, ANKRD1, EYA4, KAT2A
7. Transporters	SLC22A2, SLC22A16, RHAG
8. Apoptosis regulation	NLRC4, ANGPTL4, BAG3
9. Peptidase	NAALADL1, MEP1A, PLOD2

Gene Ontology

Figure 2 Gene ontology GoTerm network. After LOFU treatment, the gene response showed extensive upregulation of genes that are related to unfolded protein.

Gene Expression with qRT-PCR

Figure 4 qRT-PCR of select genes from the RNA sequencing. Genes were selected from pathways highlighted in the KEGG pathway analysis and validated using qRT-PCR. The data correlated well with the RNA sequencing results. HSPA6 and HSPA7 were highly regulated to 200+ and 25+ fold respectively.

Increase in Hsp70 mRNA expression after LOFU treatment

Immunomodulation of tumor cells

In vitro Effect of LOFU on Cell Surface Markers

Summary of in vitro data under JJI-ENERGY

> LoFu is non-ablative
> LoFu induces "sonic stress" on cancer cells
> Sonic stress signature is consistent across cell types and indicative of immune stimulation

			3 Watt LoFu 3LL 4T1 TPSA23 6h 24h 6h 24h							5 Wat	t LoFu		
			BLL	4	4T1		TPSA23		u	4T1		TPSA23	
		6h	24h	6h	24h	6h	24h	6h	24h	6h	24h	6h	24h
	HSP70												
ER Stress	CRT												
	BiP												
	MHCI												
Co-stimulatory	CD86												
Death	Fas												
Receptors	CD40												
Inhibitory	PD-L1												

0 5 10 20 30 No change TBD

Treat the tumor draining lymph node (TDLN – immune privilege site)

- Reprogram tolerogenic DCs (IDO inhibitors)
- Inhibit regulatory T cells (Treg)
- Reverse T-cell anergy in TDLN LOFU primary tumor

T cell activation vs. T cell anergy

T cell Activation vs. T cell Anergy

B16 tumors induced CD4⁺ T cell anergy

LOFU prevents B16-induced CD4+ T cell anergy

T cell anergy: transcriptional program

LOFU prevents B16-induced CD4+ T cell anergy

LOFU can reverse established T cell anergy

LOFU as adjuvant for IGRT requires T cells

LOFU as adjuvant to potentiate effect of RT and improve control of distal metastases

CD62L^{-VE}/CD4^{+VE} population in Tumor infiltrating lymphocytes (TILs)

CD62L-VE/CD8+VE in Tumor infiltrating lymphocytes (TILs)

LOFU+17AAG reduces the expression of prostate cancer stem cell marker

Did the number of cells go down or expression?

Acoustic Priming

The FOCAL Team

Guha Laboratory

Students.: Lorenzo Agoni Karin Skalina Talicia Savage Justin Tang Research Associates: Huagang Zhang Associates: Indranil Basu Lisa Scandiuzzi Rafi Kabariti Nitin Ohri Madhur Garg

Immune Tolerance Sanmay Bandyopadhyay Fernando Macian

Steve Almo

Medical Physics

Assoc.: Patrik Brodin

Director: Wolfgang Tome

/ay

Thank you!

Albert Einstein College of Medicine

