Advancing the role of MRI in high intensity focused ultrasound treatments

Allison Payne, Henrik Odeen, Dennis Parker

NON-INVASIVE THERAPEUTIC MODALITY

- HIFU non-invasively changes tissues at the cellular level
 - Thermal: tissue heating due to the absorption of ultrasound energy
 - Mechanical: cavitation
- Image guidance used for treatment planning, monitoring, and assessment should be non-invasive as well

MAGNETIC RESONANCE IMAGING

- Generally qualitative images weighted by tissue properties
- Quantitative information rapidly increasing
- Rapid advancement of MRI sequences and reconstructive techniques

OBJECTIVE

Review current and developing MRI techniques that are used in MRI guided high intensity focused ultrasound therapies for treatment

- Planning
- Monitoring
- Assessment

MRI in treatment planning

TREATMENT PLANNING

- Patient setup, transducer alignment

Thermoguide, Image Guided Therapy, Bordeaux France
TREATMENT PLANNING

- Evaluation of acoustic window
 - Gas bubbles

TREATMENT PLANNING

- Evaluation of acoustic window
 - Far-field considerations

BEAM LOCALIZATION

- Test sonications are often performed to localize and calibrate the ultrasound beam
- Repeated multiple times to adjust positioning and align MR slices
- Potential unwanted thermal buildup
- Alternative is MR Acoustic Radiation Force Imaging

Ghamoni et al., Am J Roentgenol 2015, 205:150-159

BEAM LOCALIZATION

de Bever et al., Mag Reson Med, 2016, 76:803-813
PATIENT-SPECIFIC TISSUE PROPERTIES

- Known intra- and inter-patient variability

McDannold et al., Radiology, 2006, 240(1)

THERMAL TISSUE PROPERTIES

Dillon et al., NMR Biomed, 2015, 28:803-813

ACOUSTIC TISSUE PROPERTIES

Johnson et al., Int J Hyperthermia, 2015, 32(7)

MRI treatment monitoring techniques

MRI treatment monitoring techniques

Wijlemans et al., Inv Radiol, 2013

TYPICAL ABLATION REGIONS

Wijlemans et al., Inv Radiol, 2013
MR THERMOMETRY: PROTON RESONANCE FREQUENCY

- Linear with the temperature range of interest
 \[\alpha = \frac{d\omega}{dT} \]
- Calculated from the phase image

MR THERMOMETRY: PROTON RESONANCE FREQUENCY

MU(C)R

\[\omega_{\text{low}}(T+\Delta T) = \gamma B_0 (1-\sigma (T+\Delta T)) \]

\[\omega_{\text{high}}(T) = \gamma B_0 (1-\sigma T) \]

MRI THERMOMETRY: TECHNICAL SPECS

Spatial Resolution: 1 x 1 x 3 mm
Temporal Resolution: 2 seconds per image*
Volume Coverage: 256 x 162 x 72 mm*
Signal-to-Noise: SNR = 47
*Specific for brain treatments

MRI THERMOMETRY: TECHNICAL SPECS

Spatial Resolution: 1 x 1 x 3 mm
Temporal Resolution: 2 seconds per image
Volume Coverage: 256 x 162 x 72 mm
Signal-to-Noise: > 25*
Temperature accuracy: \(\sigma_T \approx 1/\text{SNR} \)

\[\Delta T = \frac{\Delta \phi}{\alpha \gamma B_0 TE} \]

Not absolute temperature

\(T+\Delta T \)
\(T \)
VOLUMETRIC MR THERMOMETRY
- Interleaved 2D
 - MASTER (multiple adjacent slice thermometry with excitation refocusing)\(^1\)
- 3D undersampled
 - Temporally constrained reconstruction\(^2\)
 - Model predictive filtering\(^3\)
 - Direct temperature estimation\(^4\)
 - Hybrid radial-Cartesian\(^5\)

3D multi-echo stack-of-stars sequence
- Simultaneous acquisition of multiple parameters
 - \(\Delta T\), \(M(0)\), \(T^2\), fat/water separation

VOLUMETRIC MR THERMOMETRY
- 3D reduced field of view
- 2D spatially selective RF excitation
- Parallel imaging + UNFOLD\(^6\)

Model predictive filtering

VOLUMETRIC MR THERMOMETRY
- Simultaneous acquisition of multiple parameters
 - \(\Delta T\), \(M(0)\), \(T^2\), fat/water separation

TEMPERATURE MONITORING IN FAT
- PRF inaccurate in tissues with high lipid content
 - Bone marrow, adipose tissues
 - Subcutaneous fat layers, near-field heating
- Relaxometry methods were first used to demonstrate MR temperature imaging techniques.

T2-BASED THERMOMETRY
- 3T, dual-echo TSE, 15 second acquisition
- Calibrated T2 changes to ex vivo tissue, normal subjects

References:
1. Marx et al., JET Trans Med Imag, 2014 34:248-255
6. Davatzikos et al., J Ther Ultrasound 3(18) 2015

Images:
- Payne et al., Advancing MRI in HIFU Treatments 2017 AAPM Meeting, Denver CO
- Svedin et al., Magn Reson Med, 2017 early view
Incomplete spoiling of the transverse magnetization, and

FIG. 3. Simulation results showing the effects of noise as a function of TR and TE.

The slope was found to be 4.5 ms/

Temperature dependence values reported by others

Due to heat perfused fat/water voxels.

Hybrid PRF/T1 thermometry measurements

Calibration done on excised human breast fat samples

Room temperature (21 °C). The temperature dependence calibration. The

T1-based thermometry

• Variable flip-angle, spoiled GRE sequence
• Hybrid PRF/T1 thermometry measurements
• Calibration done on excised human breast fat samples

T1-based Thermometry

TREATMENT ASSESSMENT

• Thermal dose and non-perfused volume comparison
• 7-42% of the disagreement due to heat accrual errors

VOLUMETRIC MR THERMOMETRY

• Treatment endpoint evaluation by interrogating changes in tissue mechanical properties

MULTI-POINT MR-ARFI

92 second acquisition time

MULTI-PARAMETRIC ASSESSMENT

• Cluster analysis of T1, T2, ADC
• Determine tumor viability at multiple time points
• Most sensitive for delayed effects

THOMAS ET AL., MAG RECON MED. 2013, 49:62-70

BIBER ET AL., JMRI 2016, 43:282-289

PAYS ET AL., MED PHYS 2015, 42:302-317

PAYNE ET AL., MAG RECON MED. 2013, 49:62-70
ACUTE TREATMENT ASSESSMENT

- Often conflicting results that are tissue type dependent
- Acute MRI methods should be sensitive to ischemic effects
 - BOLD MRI, amide protein imaging, 23Na

SUMMARY

- MRI currently used extensively in HIFU treatments
- Planning
 - Visualization and evaluation
 - Patient-specific property estimation and implementation
- Monitoring
 - MR temperature imaging
 - Volumetric multiple parameter, quantitative monitoring measurements

SUMMARY

- Assessment
 - Thermal dose, non-perfused volumes
 - Mechanical properties
 - Direct measurement of tissue pathology
- Adequate SNR critical for all areas
 - HIFU specific RF coil development

ACKNOWLEDGEMENTS

Focused Ultrasound Lab
Program Director: Dennis Parker, Ph.D.
Rock Hadley, Ph.D.
Doug Christensen, Ph.D.
Erik Dumont, Ph.D.
Henrik Odeen, Ph.D.
Chris Dillon, Ph.D.
Sara Johnson, B.S.
Bryant Svedin, Ph.D.
Scott Almquist, B.S.
Lorne Hofstetter, B.S.
Hailey McLean
Jill Shea, Ph.D.
Emilee Minalga, M.S.
Robb Merrill, M.S.
Image Guided Therapy