

NON-INVASIVE THERAPEUTIC MODALITY

- HIFU non-invasively changes tissues at the cellular level
- Thermal: tissue heating due to the absorption of ultrasound energy
- Mechanical: cavitation
- Image guidance used for treatment planning, monitoring, and assessment should be noninvasive as well

MAGNETIC RESONANCE IMAGING OBJECTIVE Generally qualitative images Review current and developing MRI techniques weighted by tissue properties that are used in MRI guided high intensity focused Quantitative information rapidly ultrasound therapies for treatment increasing • Rapid advancement of MRI Planning sequences and reconstructive Monitoring . techniques Assessment

TREATMENT PLANNING

• Patient setup, transducer alignment

UCAIR

TREATMENT PLANNING

Evaluation of acoustic window
– Far-field considerations

BEAM LOCALIZATION

- Test sonications are often performed to localize and calibrate the ultrasound beam
- Repeated multiple times to adjust positioning and align MR slices
- Potential unwanted thermal buildup
- Alternative is MR Acoustic Radiation Force Imaging

Ghanouni et al., Am J Roentgenol 2015, 205:150-159 McDannold et al., Med Phys 2008, 35(8):3748-58

VOLUMETRIC MR THERMOMETRY

- Interleaved 2D
 - slice thermometry with
- excitation refocusing)¹
- 3D undersampled
 - Temporally constrained reconstruction²
 - Model predictive filtering³
 - Direct temperature estimation⁴
 - Hybrid radial-Cartesian⁵
- MASTER (multiple adjacent 3D reduced field of view - 2D spatially selective RF excitation
 - Parallel imaging + UNFOLD⁶
 - ¹Marx et al., IEEE Trans Med Imag, 2014 34:148:155 ²Todd et al., Mag Reson Med, 2009 62:406-419 ²Todd et al., Mag Reson Med, 2016 63:1269-1279 ⁴Gaur et al., Mag Reson Med, 2015 73:1914-1925 ⁵Sredin et al., Mag Reson Med, 2017 ed1/view ⁶Mei et al., Mag Reson Med, 2011 66:112-122

UCAIR

TEMPERATURE MONITORING IN FAT • PRF inaccurate in tissues with high lipid content - Bone marrow, adipose tissues - Subcutaneous fat layers, nearfield heating · Relaxometry methods were first used to demonstrate MR

Parker D. et al., Med. Phys. 10(3):321-325, 1983

techniques.

temperature imaging

	1	1.400		420	1	
		5. 1	dia (100	811	
	1	2	320	23	- Sasc	
	- C.	+-33C	Sec.	-320		
	6	Se .	12. 1			
	1 310	10	5.			
100	F10		PIG			1.1
11	11.1				11	1
8	11 -		5 (CAN)		1.11	1
18	ti it	11111	1410	111	1	14
8	11 11	11 1 1 1			<u></u>	11
, EU			1111	1	110	新雄
S	11 11		1	1		11
	11		1.	1.41	1.11	4
3	11-14	X		1.1	1.2.2	15.1
2 +	11/		1.1.31	11.15	1610	10.1
° 1.	X	1. 111		In ite	1.1.	1.12
8	11 11		11:1:	144	11)	111
°0.co	8.00	16.00 TEP	PERMITURE	12,00 ×	0.68 %	5.00

ACUTE TREATMENT ASSESSMENT

- Often conflicting results that are tissue type dependent
- Acute MRI methods should be sensitive to ischemic effects
 - BOLD MRI, amide protein imaging, ²³Na

UCAIR

vrs et al., Mag Reson Med 2015, 75:302-317 is et al., JMRI 2009 29:649-656

SUMMARY

- MRI currently used extensively in HIFU treatments
- Planning
 - Visualization and evaluation
- Patient-specific property estimation and implementation
- Monitoring
 - MR temperature imaing
 - Volumetric multiple parameter, quantitative monitoring measurements

SUMMARY

- Assessment
 - Thermal dose, non-perfused volumes
 - Mechanical properties
 - Direct measurement of tissue pathology
- Adequate SNR critical for all areas - HIFU specific RF coil development

UCAIR

ACKNOWLEDGEMENTS

Program Director: Dennis Parker, Ph.D. Rock Hadley, Ph.D. Doug Christensen, Ph.D. Erik Dumont, Ph.D. Henrik Odeen, Ph.D. Chris Dillon, Ph.D. Sara Johnson, B.S. Bryant Svedin, Ph.D. Scott Almquist, B.S. Lorne Hofstetter B.S. Hailey McLean Jill Shea, Ph.D. Emilee Minalga, M.S. Robb Merrill, M.S. Image Guided Therapy

UCAIR