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Outline 

• Overview of Hybrid Angular Spectrum (HAS) method 

• Validation: 

– Comparison of HAS to k-Wave simulations 

– With experimental MRI temperature imaging 

• Applications: 

– Phase aberration correction in UofU Breast System 

– Characterization of scattering by the skull  

Overview of Hybrid Angular Spectrum Method* 

• Extends traditional homogeneous angular spectrum method (in spatial-

frequency domain) to include 3D heterogeneous media 

• Leapfrogs between the space and spatial-frequency domains (next slide) 

• Employs FFT commands, so very rapid 

• Assumptions: steady state conditions, linearity and compressional waves 

only 

 

*U. Vyas and D. A. Christensen, "Ultrasound beam simulations in inhomogeneous tissue geometries using the hybrid 
angular spectrum method," IEEE Trans UFFC 59 (6), 1093-1100, June 2012. 
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• k-Wave: a well-known open-source pseudospectral k-space method 

• Both simulation methods modeled pressure from a phased-array transducer into a 
heterogeneous breast model 

• HAS pattern was compared to steady-state result from k-Wave 

• k-Wave: 8 hours, 32  min;     HAS: 27 sec 

 

309 x 181 x 308 MRI-segmented model 

0.25-mm resolution 1.0 MHz 

3 tissue types : 
breast fat 1480 m/s 0.75 dB/cm 
fibroglandular 1480  m/s 0.80 dB/cm 
cancer 1560 m/s 1.15 dB/cm 
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Validation 1 - Comparison of HAS to k-Wave Simulation 

Pressure Profile through Focus 

Normalized Root-Mean- 
Square Deviation (NRMSD) 

 = 2.96% 

 
over 10 x 10 x 20-mm volume 
around focus 
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Results – Comparison of HAS to k-Wave Simulation 

Homogeneous gelatin phantom with 
varying milk concentration (30 ,50, or  70%) 

Water  

US transducer   

MR image 

3D MR thermometry  
  (PRF) 

Ultrasound sonications 
 at 20 & 25 W, 940 kHz   

Validation 2 – With Experimental MRI Temperature Imaging 

Compare simulated temperatures  to 
experimental MRTI temperatures  
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1. Compare  simulations with  experimental temperature profiles -  

Acoustic simulations:  Hybrid Angular Spectrum method (HAS) 

Thermal simulations:  Finite-Difference Time-Domain (FDTD) of  Penne’s 

Bioheat Equation (PBHE) 

2. Use Monte Carlo statistical analysis to calculate expected uncertainties in the 
simulated temperature rise given uncertainties of input parameters -   

Tissue-specific properties vary widely in literature 

Two-fold Motivation 

HAS: Simulate acoustic 
power profile  

PBHE: Simulate 
temperature profile 

Experimentally measure 
acoustic and thermal 
properties of gelatin 

Experimental temperature 
profiles from MRTI 

Flow Diagram 

compare 

Acoustic Properties Thermal properties 

Measurements of Parameters and Their Uncertainties 

Density 
 (±0.8%) 

Acoustic  
absorption  

(± 16%) 
 

Transducer 
efficiency  
(± 1.1%) 

Radiation 
Force Balance 

Acoustic 
absorption  

(± 16%) 

 
Speed of 

sound  
(± 0.1%) 

Through-
Transmission 

Thermal 
Diffusivity  
(± 10%) 

 
Volumetric Heat 

Capacity  
(± 10%) 

 

Kd2 Thermal 
Probe 
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Results – Peak Temperature 

Temperature Rise (Spatial Peak Temporal Peak) 
    (ave of N = 3) 

• Average Normalized 
Temperature Difference (N = 18) 

   = 3.3% 

 
 

• Error bars represent expected 
temperature range due to 
uncertainties in simulation input 
parameters (Monte Carlo) 
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Results – Spatial Profiles 

• Normalized Difference 
in FWHM (N = 18)  

Transverse = 4.7% 

Longitudinal = 12.1% 

 

• Offset in location of 
peak (x,y,z) 

 = (0,0,1.7 mm) 

 

one example: 50% milk at 25 W (ave of N = 3) 

Applications 



8/1/2017 

6 

Application 1 – Phase Aberration Correction  

What is phase aberration correction? 

3D-printed aberrator 

phased-array 
transducer 

hydrophone scan 

Concept : Correcting Phase Aberration with HAS Simulations 

Propagate beam from 
each element with 0° 
phase 

 
Find each phase at 
intended focus 
 
Invert phase on 

respective elements 
 
Achieve constructive 
interference at intended 
focus 

phased-array 
transducer 

aberrating 
medium 

Phase Aberration Correction - in UofU Breast System 

UofU Breast System - cut-away view :  HAS simulations with phase aberration* :  

laterally firing phased-array transducer  *A Farrer, et al. 2016 Med Phys 43(3): 1374-1384 

Motivation: Experimentally demonstrate that HAS simulations can correct  
for phase aberrations in experimental breast-mimicking phantoms 
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• Breast mimicking phantoms 

- 250-bloom gelatin with 50%  milk  

c = 1555 m/s,  a = 0.047 Np/cm MHz 

similar to fibroglandular tissue 

- canola oil (generates aberrations) 

c = 1469 m/s,  a = 0.0125 Np/cm MHz 

similar to breast fat 

 

• MRgFUS heating 

- 20 -30 s sonications,12 -24 acoustic watts 

- 3D MRTI in oblique plane 

- with and without phase aberration 
      correction 

 

transducer 

water bath 

gelatin 
oil-filled 

balloons 

Experimental HAS-based Phase Aberration Correction 

Results 

Temperature - Not corrected Temperature - Aberration corrected 

 Average of 23% increase in temperature rise (13 unique sonication locations) 

°C °C 

Application 2 – Characterization of Scattering by the Skull  

1024-element phased-array 
transducer 

• Attenuation = absorption (heating) + scattering 

 

• Acoustic scattering in the skull is a significant portion 
of attenuation in transcranial HIFU treatments 

 

• Attenuation varies from patient to patient, and 
current clinical images (from CT Hounsfield Units) do 
not separate out the scattering portion of 
attenuation 

 

• Modeling scattering requires finer resolution than 
clinical CT, thus MicroCT 
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MicroCT Clinical CT 
(for patient-specific 

planning) 

401-500 HU 801-900 HU 1201-1300 HU 

Models – Developed from Human Skull Flap 

MicroCT model 

3D registered 

Simulating Scattering from MicroCT Models with COMSOL 

• FEM iterative solver with automatic meshing 

• 1 MHz, 650 kHz, 220 kHz plane wave input 

• No absorption or mode conversion included (scattering only) 

• Acoustic properties: 

- Bone – 2900 m/s, 1900 kg/m3 

- Porous areas – 1500 m/s, 1000 kg/m3 

• Simulated 3 x 13 MicroCT models, 3 each of 13 100-HU ranges 

 

 

Results – Scattering Coefficient vs. Hounsfield Units 

• Scattering increases at low HU 
(more small pores) 

 

• Scattering increases at higher 
frequencies 
 

• Next: Experimental validation 
with several small skull pieces 
covering various HU ranges 
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Conclusions 

Validation: 

• Comparison of HAS to k-Wave breast model pressure patterns was 

within 3% 

• Comparison of simulated to experimental temperatures was within 

3.3% for peak temperature, and within 12.1% for spatial FWHM 

 

Applications: 

• Phase aberration correction is beneficial for many sonication 

locations in the UofU Breast System  

• Map being developed of scattering coefficient to clinical CT 

Hounsfield Units 

Focused Ultrasound Lab 
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MicroCT Models - Registered to Clinical CT Voxels 

~ 600 HU 

~ 900 HU 

~ 1300 HU 

Form three samples of 

3D MicroCT models over 

13 HU ranges 

Models - Developed from a Human Skull Flap 

MicroCT Clinical CT 

Motivation 

• Acoustic scattering in the skull is a significant portion of attenuation in 
transcranial treatments 

 

• Attenuation = absorption + scattering 

 

• Attenuation varies from patient to patient, and current clinical images 
(from CT Hounsfield Units) do not separate out the scattering portion of 
attenuation. 

 

• Modeling scattering requires finer resolution MicroCT 
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Results – Scattering Coefficient vs. HU 

[1] S. Pichardo, V. W. Sin, and K. Hynynen,  
Phys Med Biol 56/1, Jan 2011. 

• Scattering increases at low HU 

 
• absorption = attenuation – scattering 

 
• At low HU, need to differentiate 

between clusters of small scatterers 
and partial volume effect 


