Cancer Research

in partnership with The ROYAL MARSDEN NHS Foundation Trust

Physics aspects of HIFU clinical trials for cancer treatments

Gail ter Haar

The Institute of Cancer Research : Royal Marsden NHS Foundation Trust Joint Department of Physics Gail.terhaar@icr.ac.uk Making the discoveries that defeat cancer

A HIFU Team must be:

Multidisciplinary

Interventional radiologist : Nandita deSouza MR Radiographer : Sharon Giles Pain specialist : Matt Brown & anaesthetic team MR physicists: David Collins, Jessica Winfield HIFU physicists: Ian Rivens, John Civale, Gail ter Haar,

The role of the physicist

The role of the physicist

Primarily:

Calibration & QA of device

Treatment delivery

The role of the physicist

Calibration & QA of device

HIFU Calibration and QA Why?

- Confidence in system output (power, field distribution etc.)
- System safety
- Interpretation of results from preclinical/clinical studies using different systems/equipment

HIFU Calibration and QA

Why?

- Necessary for wider acceptance of
- HIFU as a non-invasive therapeutic

modality

· Need for well established protocols

HIFU devices are complex

Comprised of: Ultrasound transducer Positioning system Drive electronics Cooling system Degassing system MR/US scanner HIFU table

Philips Sonalleve MRg-HIFU System

- Installed at The Royal Marsden, Sutton, Oct 2013
- Existing 3T Achieva scanner
- Focused Ultrasound Foundation funded European Centre of Excellence

MRgHIFU

QA Procedure

Purpose of a QA Test is to ensure that the HIFU system performance is 'normal' prior to the therapy.

Sonication test

- To check that sonication accuracy and power levels are normal
- Heating location accuracy
- Temperature accuracy
- · Heating volume accuracy.

Air bubble check

· Is done always prior to any sonication.

• To avoid reflection which might cause transducer damage.

QA Phantom

Tissue mimicking

Allows checking of focal position & thermometry

AAPM MRI-guided focused ultrasound task group-241

15

Philips QA Phantom

Philips QA Phantom

PHILIPS

Keep a record

Look for sudden changes, or drift, over time

QA Wand Cell 1							
DATE [YYYYMon-DD] & User's Initials	HEATING OFFSETS (mm)		HEATING LENGTH	HEATING DRAMETER	MAX TEMP (°C)	REASON IF FALLED	

MRgHIFU Calibration

Challenges to working on an MRgHIFU clinical system:

- MR compatibility/safety
- Space limitations
- Technology limitations
- Access to and control over the transducer

Quantities that should be recorded

Transducer Characteristic	Characterization Technique	Relevance
	Physical dimensions of transducer	In general, the size of the focal spot is inversely proportional to the aperture size.
Focal Length (L)	Spherical transducer: radius of sphere	Distance of transducer face to geometric focal point
Element Configuration (N _{elem})	Defined by transducer design.	Single element transducers must be mechanically moved to move the focal point. Phased-array transducers allow for electronic steering allowing for multi-focus and volumetric ablation
	Driving frequency of the transducer element(s)	Affects both the wavelength and attenuation of the ultrasound beam. The frequency of a HIFU system is application dependent.
f-Number (f#)	L/D	The ratio, L/D, is defined to be the f-number (f-#) of the transducer; the smaller the f-#, the smaller the focal spot increasing the energy deposited at that point.
Beam Full Width Half Maximum (FWHM)	Hydrophone measurement	The width of the beam measured at the focal point, assessed with pressure or intensity (should be specified).
	Radiation force balance or hydrophone scans of intensity over full cross-sectional area of the ultrasound beam	Defines the relationship between electrical and acoustic power. A larger efficiency will result in a higher acoustic output for a given electrical input.

AAPM MRI-guided focused ultrasound task group-241 report - Draft

Philips Sonalleve system

Courtesy of Philips Healthcare

Acoustic Power Measurements

Aim: to develop MR compatible system

Develop and build:

- Tank couples to membrane
- Target castor oil buoy
- Stand fit on Sonalleve couch

Validate the use of a load cell (Tedea-Huntle used to measure the forces acting on the ta

Acoustic Power Measurements

 Signal noise:
 ~2 mg (30 mW)
 ~30 mg
 (440 mW)

 (Rad. force power equiv.)
 ~5 mg following filtering
 (70 mW)

Measurements at the Focal Peak

Sonalleve Power Measurements

Determined from 3 repeats at 100, 125, 150 and 175 W, 1.2 MHz 20s CW exposures

MR compatible positioning system Features: make use or wrkt B₀ static Onda HGL-0200 magnetic field • Drivehydrophone signals •traMRs sateed via fibre-optic cables

Robust

• Mc

- · Compact size
- Flat frequency response
- · Spatial resolution 0.2 mm

Testing frequency

Test description	Measured parameter	Testing subset	
Motor system evaluation	Comparison to	Acceptance,	Every 20 patients or 6
	baseline*	Commissioning, Periodic	months
Transducer focusing capability	FWHM of beam	Acceptance, Commissioning, DQA	Either daily or before every patient
Transducer steering	Distance of beam	Acceptance,	Either daily or before
	steering	Commissioning, DQA	every patient
Table positioning and homing capability	Comparison to	Acceptance,	Every 20 patients or 6
	baseline*	Commissioning, Periodic	months
Imaging SNR	Comparison to	Acceptance,	Either daily or before
	baseline*	Commissioning, DQA	every patient
MR temperature imaging accuracy	Comparison to invasive	Acceptance,	Every 20 patients or 6
	fiberoptic probe	Commissioning, Periodic	months
Planning/delivery software function	??	Acceptance,	Every 20 patients or 6
evaluation		Commissioning, Periodic	months
Cavitation detection	??	Acceptance, Commissioning, Periodic	Every 20 patients or 6 months
Safety interlock evaluation	Functionality	Acceptance, Commissioning, DQA	Either daily or before every patient
Acoustic output (radiation force balance)	Transducer output (in	Acceptance,	Every 100 patients or 1
	W)	Commissioning, Periodic	year
Ultrasound beam characterization	FWHM, I _{SPPA}	Acceptance,	Every 100 patients or 1
(hydrophone)		Commissioning, Periodic	year
Visual check of the equipment for damage	Comparison to	Acceptance,	Either daily or before
	baseline*	Commissioning, DQA	every patient
Degassing system	Oxygen content (ppm)	Acceptance, Commissioning, Periodic	Every 20 patients or 6 months
Coupling membrane integrity inspection	Comparison to	Acceptance,	Either daily or before
	baseline*	Commissioning, DQA	every patient

The role of the physicist

Treatment delivery

HIFU exposure (cell) sizes

Treatment planning

Yellow box:DTV

Treatment monitoring

 Proton resonance frequency shift (PRFS) thermometry acquired using echo planar imaging (EPI) at 1s intervals

Diagram courtesy of Philips

· Monitors heating seen in soft tissues adjacent to bone surface

Pain Palliation

Gail ter Haar

Institute of Cancer Research : Royal Marsden NHS Foundation Trust Joint Department of Physics

Gail.terhaar@icr.ac.uk

Making the discoveries that defeat cancer

Background

- Bone metastases commonly cause significant pain, functional limitations and decreased quality of life
- Bone pain arises in part from:
 increased sensory innervation
 Sensitisation of nerve cell
- fibres

 External beam radiotherapy (EBR)
- Up to 30% non-responders
- Up to 50% recurrence in responders
- Re-treatment potential is limited²

• HIFU

- · Non-invasive, but non-ionising (pressure) wave
- · thought to alleviate pain by thermal denervation of the periosteum

1: Steenland E et al, Radiother Oncol 1999; 52(2):101-9; 2: Huisman M et al, Int J Radiat Oncol Biol Phys 2012; 84(1):8-14

Bone metastases

Common in breast, prostate
 & lung cancer

activity

TGE

RANKL Tumo

Pathological sprouting of periosteal sensory nerve fibres

growth fact

- Primary bone cancers osteosarcoma
- Unifying feature = PAIN
- Multifactorial
- origin
- Periosteal disruption
- Local tissue
- destructionChanges in sensory
- innervation
- Changes in tissue pH

How does HIFU deliver analgesia?

British Journal of Anaesthesia, 115 (4): 520-30 (2015)

doi: 10.1093/bja/aev302 Review Article

The use of high-intensity focused ultrasound as a novel treatment for painful conditions—a description and narrative review of the literature M R.D. Bown¹¹; F Bruqular-Smith.), E. Williams¹, G. or Hae² and N.M. deSound²;

Rationale:	MR-HIFU can palliate pain from bone metastases by local denervation of the periosteum $_{e.g.\ Hurwitz,\ et\ al}$ JNCI 2014					
Objective:	Efficacy without side	Efficacy without side effects				
Patients:	Bone pain unresponsive to standard care (radiotherapy (EBRT), systemic therapy and analgesia) - survival is months, rather than years					
Design:	Multi-centre, single arm, non-randomized, non-blinded Planned patient enrolment: • The Netherlands: 14 study + 2 roll-in • Korea: 14 study + 2 roll-in • United Kingdom: 13 study + 2 roll-in • India: 13 study + 2 roll-in					
Intervention:	Single HIFU session under sedation					

Study Endpoints

• Pi	rimary Endpoint:	Pain response (NRS) after 30 days
•	Complete response	– pain score 0, no [†] in analgesia
•	Partial response	– pain score 2 points or 25% in analgesia
	Progression	- pain score 2 points or 25% in analgesia
	110910001011	
• Se	econdary endpoint Adverse events	s: e (Q of L) measurements

• Patients may withdraw after day 30 e.g. for other treatment

Entry Criteria

Inclusion Criteria	Exclusion Criteria		
Men and women ≥ 18 years	Sedation or contrast MR contraindicated Enrolment in another bone/pain relief clinical study		
Weight < 140kg	Need for surgical bone stabilisation Medical history that could threaten patient safety		
≤ 3 painful lesions	Unable to tolerate treatment position		
Patient able to: give informed consent communicate sensation be on stable pain medication for ≥1 week	Target tumour: is a primary tumour, lymphoma, multiple myeloma, or leukernia < <u>3cm from bladder/bowel/nerve</u> or < 1cm in plane orthogonal to the beam in contact with hollow viscera		
Target tumour: bone metastasis (NRS ≥4/10), after standard care MR visible (non-contrast) ≤ 8cm maximum dimension ≥ 1cm from skin	located in skull, joints, spine (exc. sacrum), ribs or sternum (if HIFU exposes lung), beneath a scar close to an internal or external fixation device previous surgery or minimally invasive therapy		
accessible with HIFU no local treatment for 4 weeks	Pain due to : (impending) fracture involvement of a major nerve		

Patient Pathway - 1 week pre-treatment

1. Pain rigorously assessed & measured (pain must be from

target tumour)

- 2. 3D MR scanned for suitability:
 - Tumour size & location
 - Acoustic window
 - Organs/structures at risk (nerves)
- 3. Preliminary treatment planning:
 - · Patient position
 - · No. and size of exposure cells

Treatment planning & follow up

- 1. Treatment planned using 3D T1-w images
- 2. (Post treatment contrast T1-w imaging)
- 3. Sedation reversed for:
 - skin examination
 - pain examination
- 4. Discharged after 2-3 hrs
- 5. Daily pain (BPI) /QoL (EORTC) diary for 30 days
- 6. Contacted by Radiographer Days 7 & 14
- 7. Day 30, 60, 90: MR scans and hospital questionnaire

Patient setup

- Acoustically transparent
 membrane
- Degassed water coupling
- Gel pad coupling to patient

Courtesy of Philips

Treatment planning

Water Acoustic gel couplant

Treatment delivery

15

Placement of "cells"

View in orthogonal planes

3 case studies

2 "easy"; 1 more difficult than usual

Patient 1

Patient 1 - Setup

- Pain uncontrolled, NRS 8-10 (3 months after 8 Gy ERBT)
- 51 year old female with painful metastasis (breast) in right shoulder

- Patient positioning challenges:
 - "Normal" incidence on bone surfaceRequired shaping and cutting of gel pads
 - Tendency to slip
 - · Larger patient would not fit in the bore
 - Central lesion

Patient 1 – Treatment (June 2014)

- 11 exposures at 1.2 MHz
- "Near-field heating"
- 3 x 4mm cells, 8 x 8mm cells, Powers 20-60W
- Treatment time: 1 hour

Results: Patient 1

- 51 year old female with metastatic breast cancer, painful metastasis right shoulder
- Challenging positioning for treatment (space, coupling)
- Post treatment imaging shows no adverse features
- Pain scores reduced
- Range of movements greatly increased
 No analgesia now being used

No adverse events

Patient 1 – Imaging Results

- i adont i inaging rood
- Post treatment imaging
 no break in cortex up to day 90
 - no break in cortex up to da
 no adverse features
 - no lesion growth up to day 90
- Temporary oedema at day 60
- Imaging changes suggestive of response:
 - Less contrast enhancement
 - · Marrow fat returning to volume

3 case studies

Patient 10

Clinical Case Studies: Patient 10

Clinical Case Studies: Patient 10

Planning row 1

Planning all rows coronal

Planning row 2

3 case studies

Patient 5

Patient 5 - Treatment

High risk of failure or adverse events

- MRgHIFU Jan 2015
- 11 x sonications
 - 3 x 4mm cells, 8 x 8mm cells, 1.2MHz, Powers 20-90W
- Treatment time 1 hour

Patient 5 - Results

- Pain score reduced to 0 by Day 10
- Flare up of pain after Day 21, but returned to 0 by day 30, maintained at 0 at Day 60
- However, new neuropathic pain developed down right arm from Day 21 still ongoing at Day 60 (caused by posterior rib disease – compression)
- <u>Resolved with medication Day 90</u>

	Day 30 T1W
'n	(Tester AND
I)	10000

Results: Outcomes

		Adverse Event?
1	 ✓ Day 30: PR ✓ Day 60: PR ✓ Day 90: CR 	None
2	✓ Day 30: CR	Patient had concurrent progressive H&N cancer . Withdrawn after Day 30
4	🗸 Day 30: PR	Patient had rapidly progressive disease. Withdrawn after Day 30
5	 ✓ Day 30: PR ✓ Day 60: PR ✓ Day 90: CR 	Patient developed new neuropathic pain down right arm at Day 23, related to progressive disease affecting brachial plexux, which subsequently resolved. Systemic treatment change after Day 90
6	✓ Day 30: PR ✓ Day 60: PR	Progressive painful disease elsewhere in pelvis Withdrawn after Day 60 for further EBRT
7	 ✓ Day 30: PR ✓ Day 60: PR ✓ Day 90: PR 	None
8	XDay 30: No response √ Day 60: PR √ Day 90: PR	None The nature of the patient's pain initially changed, but did not improve due to muscle stiffness that restricted movement. This subsequently resolved.
9	 ✓ Day 30: PR ✓ Day 60: PR ✓ Day 90: PR 	None
11	✓ Day 7: PR ✓ Day 14: PR XDay 30: no data	Patient had rapidly progressive disease, developing neutropenic sepsis related to chest infection Withdrawn before Day 30
17	Jay 30: PR	None to date

17 Jay 30: PR P Day 60: due mid Sep

Results: Treatments

	Tumour type		Number of sonications	Total energy delivered (KJ)	
1	Breast	Humeral head	12	9.28 ★	61.0
2	Breast	Anterior Iliac bone	17	20.75 ★	121.0
4	Renal	Posterior Iliac bone	11	15.00	52.0
5	Breast	1st Rib	11	14.84 🗶	51.7
6	Breast	Posterior Iliac bone	17	43.41	78.5
7	Renal	Sacrum	15	29.00	79.8
8	Lung	2 lesions Iliac bone	25	56.07	101.5
9	Breast	Greater Trochanter	17	20.92	86.1
11	Breast	Greater Trochanter	17	27.64	73.0
17	Breast	Ischial tuberosity	17	27.75	48.9

Trial Conclusions I

- MRgHIFU effective in reducing pain from bone metastases (CR in 3/10 patients, partial response in all others)
- Careful patient selection, screening and preparation required to
 ensure:
 - Safe treatment delivery without damage to neighbouring structures
 - treatments confer a meaningful improvement in quality of life
- Further work underway to refine methods for planning and monitoring treatments

Trial Conclusions II

- · Works well for right patient in the right circumstances
- Only small minority of patients are suitable : reviewed ~200; recruited 18; treated 10
- By time HIFU considered because of poor pain control, multiple lesions or patient too unwell for treatment. Oncologists increasingly refer these for re-treatment with radiotherapy
- Only small proportion of the painful lesion can usually be targeted.

Initial analysis of m/c trial

Response rate

Initial analysis of m/c trial

Conclusions

The Physicist has a crucial role to play in HIFU treatments:

Device QA & Calibration Patient selection Treatment planning & guidance Post treatment assessment

