









1. Learn about the presence of statistical problems in published studies
2. Identify common signs and symptoms of potential problems in various types of statistical tests
3. Learn methods for correctly implementing statistical analyses of the type commonly found in clinical publications





| Publication Year             | Study                      | Туре                                            | # participants                                             | Outcome                                                                     |
|------------------------------|----------------------------|-------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------|
| 2010                         | Interphone Study<br>Group  | Case-control study                              | ~5000 cases;<br>~5000 matched<br>controls;<br>13 countries | No overall risk*                                                            |
| 2001 (updated<br>2007, 2011) | Danish cohort<br>study     | Cohort study                                    | 358,000                                                    | No association                                                              |
| 2013 (updated<br>2014)       | Million Women<br>Study     | Prospetive cohort study                         | 791,710                                                    | Yes (acoustic<br>neuroma), then no<br>association                           |
| 2014                         | CERENAI                    | Multicenter case control                        | 447 cases, 892<br>matched controls                         | No association<br>with regular use;<br>yes association<br>with heaviest use |
| 2011                         | Swedish pooled<br>analysis | Pooled analysis of<br>2 case control<br>studies | 1251 cases, 2438 controls                                  | Increased risk of glioma                                                    |

The result of studies of thousands of animals and hundreds of thousands of people, supported by millions of dollars in funding, is that we have no definitive answer to the question of cellphone use and cancer.

So....

How confident can we be about studies like this:















The ASA's statement on p-values: context, process, and purpose

Ronald L. Wasserstein & Nicole A. Lazar

1. P-values can indicate how incompatible the data are with a specified statistical model.
2. P-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone.
3. Scientific conclusions and business or policy decisions should not be based only on whether a p-value passes a specific threshold
4. Proper inference requires full reporting and transparency
5. A p-value, or statistical significance, does not measure the size of an effect or the importance of a result.
6. By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.









A lack of statistical fluency may be part of the problem



