FLORIDA HOSPITAL The shall as head. The pairit as care.*

Best Practices for Statistics in Your Own Projects

William F. Sensakovic, PhD, DABR, MRSC Medical Physicist – Florida Hospital Assoc. Prof. – University of Central Florida Clin. Asst. Prof. – Florida State University Adj. Prof. – Adventist University

E-mail: wfsensak@gmail.com Twitter: @wfsensak

Relevant Conflicts of Interest

No relevant conflicts of interest... but I would be happy to have someone change that

Clinical Significance ... Not Their Job

- 52% dose difference – Matters?... Depends on who you ask
- Could get better quality with same dose using different vendor's product – Matters? . . . More interesting

Coefficient of Determination

15

۲ ۲

- Total Sum of Squares
 How much does the data differ from the mean?
 - Variation in the data from all sources

		-	
	etc.		
	• •-{•		
areasternes.			
0 Conce	20 entration of	40 Iodine [mg/	60 mL]

Coefficient of Determination

 Regression Sum of Squares
 How much do modelpredicted values differ from the mean?
 Variation of the model

60

Coefficient of Determination

- How much variation does the model explain?
 R² = 0.933 or ~93%
 - So not bad, but does that mean it is the correct model ... Maybe

Coefficient of Determination

- What about the other 7%?Random?
 - Measurement error
 Other predictor?
 - Wrong model?

4. Bland-Altman Analysis

- Pearson Correlation
 Linear relationship
- Spearman Correlation
 Non-linear relationship
- Best if dependent and independent variables are different categories
- Not an indication of accuracy!

4. Bland-Altman Analysis

• Best choice when measuring the same quantity with different methods!

- Bias
- Variance
- Trends

Case Selection

- · Comparisons should be on same cases Sensitivity 25%-100% depending on case selection
- The normal case subtlety must be considered to ensure sufficient number of false-positive responses
- Status at laterative data search at determination that The inputers of Houring in the adquark (1986)
 Statudy diseases prevalence does not need to match
 disease population prevalence
 ROC AUC stable between 2%-28% study prevalence, but
 small increases in observer ratings are seen with low
 prevalence
 Out at Prevalent field in a Laterative Houring Charles Reads (1840 (1867))
 Out at the Houring Charles Charles (1840) (2810)

Observer Selection

Observer Experience

- Sp 0.9:

- Se 0.76 (high volume mammographers)
- Se 0.65 (low volume mammographers) Esserman L, et al. 6:94(5):369 (2002)

Continuous Dependent Variables	Independent Variables	Independent?	Test
1 normal	1 categorical	Yes	t-test
1 normal	1 categorical	No	paired t-test
1 non-normal	1 categorical	Yes	rank sum
1 non-normal	1 categorical	No	signed rank
1 normal	1 normal continuous	-	Pearson
1 non-normal	1 non-normal continuous	-	Spearman
1 normal	> 1 categorical	Yes	ANOVA
1 non-normal	> 1 categorical	No	Kruskal-Wallis

6. Choosing the Correct Test

- Parametric
 - Non-normal & 15-20 samples per category
 - Mean describes the data
- Non-parametric
 - Deals with outliers better
 - Median describes the data

July 31, 2017 William F. Sensakovic, F

Cite This Talk/Handout

Sensakovic, WF. MO-F-201-3: Best Practices for Statistics in Your Own Projects. Med Phys. 44 (6), 3714 (2017); 3091-3092 DOI: 10.1002/mp.12304

017 William F. Sensakovic, PhD

