

Advances in MRI-based Motion Management for Radiation Therapy

Jing Cai, PhD, DABR

2017 AAPM 59th Annual Meeting, Denver, CO

Outline

- Review of current MRI techniques for motion management
- Advances in MRI technique for simulation 4D-MRI using 2D acquisition 4D-MRI using 3D acquisition
- Advances in MRI technique for treatment delivery 4D-MRI with highlighted vessels On-board 4D-MRI
- Other advances Hyperpolarized gas tagging MRI

Motion Imaging in RT

- 4D-CT is the current clinical standard for motion imaging
- Excellent contrast in the lung to reveal lung tumor motion

Limitations of 4D-CT in Imaging Abdominal Cancers

 4D-CT suffer insufficient contrast in the abdomen to reveal tumor motion, leading to potential errors

4D-MRI for RT

Compared to 4D-CT, 4D-MRI improves tumor contrast and tumor motion measurement for abdominal cancers.

Mean dose to liver: 20.7 Gy ~ 34.2 Gy for 4D-MRI and 4D-CT.

4D-MRI Strategies				
	2D Acquisition	3D Acquisition		
Retrospective	I	II		
Prospective	III	IV		
 image p limited Based on 3 fast 3D more cl hardwa 	processing, relatively easy to selections of usable MR sec <u>3D Acqusition</u> MR sequence + breathing s hallenging, MR sequence de re and software demanding) implement juences ignal evelopment		

4D-MRI Using Cine 2D Acquisition

4D-MRI Using Sequential 2D Acquisition

Single-Shot Fast Spin-Echo (SSFSE, HASTE) • T2-w • ~ 2 frame/sec

Sequential Acqui		
,	To obtain o phases at e	lifferent each slic
Repeat Measu	Volume rement	
,	To satisfy of sufficient of	lata conditior
Determine of Repeti	Minimal # tions (N _R)	

4D-MRI Image Quality: Cine ~ Sequential

Reduced Tumor Volume Variation STD of inter-phase tumor volumes 0.07 0.07 0.07 0.072 0

Improve 4D-MRI via Motion Modeling

Improve 4D-MRI via Motion Modeling						
Spatial fitting						
Original DVF	After temporal fitting	After spatial fitting				

Improve 4D-MRI via Motion Modeling Patient Example				
Original 4D-MRI	Coronal	Sagittal	Axial	

Super Resolution 4D-MRI

Synthetic 4D-MRI

> Groupwise registration for motion estimation and spatiotemporal resolution enhancement

Collaboration with Dr. DG Shen, UNC Chapel Hill

Collaboration with Dr. DG Shen, UNC Chapel Hill

Fast 4D-MRI with View Sharing Physical Phantom

 Fast Robust 4D-MRI through Spatiotemperal Constrained Sorting and Compressed Sensing Reconstruction

 Original MR
 50%, w/o TOV
 25%, w/o TOV
 0.0

 ROI
 50%, w. TGV
 25%, w. TGV
 0.15

 0.00
 50%, w. TGV
 25%, w. TGV
 0.0

 0.00
 50%, w. TGV
 25%, w. TGV
 0.0

 0.00
 50%, w. TGV
 25%, w. TGV
 0.0

 0.00
 50%, w. TGV
 0.0
 0.0

 0.00
 5%, w. TGV
 0.0
 <t

 Total generalized variation (TGV) reconstruction algorithm to maximally recover the missing information, to determine optimal k-space undersampling pattern for various MR sequences

FREEZEit MRI

- TWIST-VIBE/StarVIBE/GRASP, Fat-suppressed T1-w 3D GRE
- Radial version of VIBE, Stacks of star k-space sampling
- Compressed sensing & parallel imaging
- High robustness to motion artifacts

Thorax, abdomen, pelvis, DCE, 4D, cardiac

Siemens, NYU Langone Medical Center

r unmentande han base

3D VIBE GRE Pulse Sequence

- A 3D stack-of-stars gradient echo sequence (3D VIBE GRE) with golden angle sampling of the radial views
 kx-ky: radial read out; kz: Cartesian encoding
- Golden-angle trajectory
 - φ_n = n × 111.25 (180/1.618)
 - radial spokes never repeat
 - fill the largest gap by previous spokes
 - relative uniform k-space coverage
 - uncorrelated in temporal dimension

Restricted @ Siemens Medical Solutions USA Inc. 201

3D VIBE GRE Pulse Sequence

- A self-gating respiratory signal is derived from the k-space centers (kx = ky = 0, kz ~= 0), similar to the signal of a respiratory bellow
- Retrospectively binning of the radial spokes into multiple breathing states
- Uniform binning evenly splits the data into a user-defined number of bins with equal number of radial spokes in each bin
- Ungated and binned images were reconstructed online

Restricted © Siemens Medical Solutions USA, Inc., 2017

3D VIBE GRE: Patient Example

- Patient with Intrahepatic tumor
- 4D MRI provides much better soft tissue contrast and delineation of intrahepatic tumor compared to 4D CT

Restricted (© Siemens Medical Solutions USA, Inc., 2 Sides courtesy: Li Pan, Siemens Healthineers James Balter, University of Michigan

3D VIBE GRE: Patient Example

ROCK 4D-MRI: Methods

Respiratory motion-resolved, self-gated 4D-MRI using rotating Cartesian k-space (ROCK) 4D-MRI sequence using ROCK sampling pattern

ROCK sampling pattern

Courtesy of P. Hu, PhD, UCLA

ROCK 4D-MRI: Methods

Data binning based on Respiratory Amplitude 8 respiratory bins

Soft-gating approach

Courtesy of P. Hu, PhD, UCLA

ROCK 4D-MRI: Phantom

Step Motor 3D printed parts

Arduino

Volumetric Cine (VC) MRI

DVF Comparison: Tagging vs DIR						
Manda and and a state and the man	Proton MRI	Tagging MRI Tagging DVF				
	DIR-based D\	/Fs				

Hybrid Proton MRI and HP 3He Tagging MRI Acquisition

100 A 100 A	•	•	
12	. : : : :		
<u> </u>			Em (mm) Ea (°)
			• 10 ¹⁶⁰
			• 120 120
Contraction of the second s	DIR 1	DIR 2	• 100
	•	•	• •
			•
			•
			• 1
DIR 3	DIR 4		

Physiological-based DVF Optimization

Summary

- MRI provides unique advantages over CT for motion management of abdominal cancers in RT.
- Current challenges in 4D-MRI include motion artifacts, limited spatial resolution, lack of internal features, etc.
- Fast MR imaging together with sophisticated sorting and reconstructions techniques hold great promises in improving 4D-MRI image quality.

Acknowledgements

Duke Radiation Oncology

Fang-Fang Yin, PhD Mark Oldham, PhD Jim Chang, PhD Lei Ren, PhD Brian Czito, MD Manisha Palta, MD Chris Kelsey, MD Rachel Blitzblau, MD

Duke Radiology

Nan-kuei Chen, PhD Paul Segars, PhD Mustafa Bashir, MD Michael Zalutsky, PhD MDACC Jihong Wang, PhD

UNC-CH Radiology

Dinggang Shen, PhD Guorong Wu, PhD

UCLA Yingli Yang, PhD

Siemens Xiaodong Zhong, PhD Brian Dale, PhD

CANCERE DHILIPS

SIEMENS

24