

RADIATION ONCOLOGY & MOLECULAR RADIATION SCIENCES

Ultrasound Guided Radiotherapy for Pancreatic Cancer

K. Ding, PhD, DABR Assistant Professor, Johns Hopkins School of Medicine

July 31, 2017

AAPM 2017, Denver, CO - 07/30-08/03, 2017

- This research is supported in part by
 - USGRT: NCI CA161613, Elekta
 - EUSGRT: JHU Rad Onc Discovery Grant, Augmenix

Learning Objectives

- The audience will learn the major components including ultrasound imaging, coordinate calibration, probe positioning and image tracking for ultrasound monitoring in radiotherapy for pancreatic cancer
- The audience will learn how to incorporate the real-time ultrasound monitoring with existing pancreatic cancer treatment clinical workflow

Pancreas Cancer

- 4th leading cause of cancer-related death in US
- Typically late presentation of disease
 Only 15-20% of patients are considered resectable
- 5-year overall survival after pancreaticoduodenectomy (whipple surgery)
 - 25-30% for node-negative disease
 - 10% for node-positive disease
- More recent data suggest outcomes may be improving over time

Breath hold monitoring during pancreas SBRT

USGRT components

*Elekta Clarity user manual *L.S. Thomas, Diagnostic ultrasound imaging: inside out. Elsevier academic press, 2017.

CT/US Sim

*L. Su et al, Feasibility study of ultrasound imaging for stereotactic body radiation therapy with active breathing coordinator in pancreatic cancer, JACMP 2017 7

Ultrasound contouring

8

Probe impact on planning

*L. Su et al, Feasibility study of ultrasound imaging for stereotactic body radiation therapy with active breathing coordinator in pancreatic cancer, JACMP 2017, Issue 4

Probe impact on planning

Actual point dose at "isocenter" from all prescriptions/beams is 3975.91 cGy.

Duo V15 = 5.96 cc < 9cc Duo V20 = 1.59 cc < 3cc Duo V33 = 0.0 cc < 1cc PTV V33 = 90.09% >90% Sto V15 = 8.52 cc < 9cc Sto V20 = 1.45 cc < 3cc Sto V33 = 0.0 cc < 1cc Bowel V15 = 6.68 cc < 9cc Bowel V20 = 1.44 cc < 3cc Bowel V33 = 0.0 cc < 1cc

Treatment setup

CBCT initial setup

12

Ultrasound monitoring

*L. Su et al, Feasibility study of ultrasound imaging for stereotactic body radiation therapy with active breathing coordinator in pancreatic cancer, JACMP 2017, Issue 4

13

Robotic arm for gated proton therapy

*Collaboration with Dr. Haibo Lin, University of Pennsylvania Proton Center ¹⁴

Visual servoing automatically place probe

OHNS HOPKINS

*H.T. Sen et al, Cooperative control with ultrasound guidance for radiation therapy, Frontier Oncology 2016
*H.T. Sen et al, System Integration and In Vivo Testing of a Robot for Ultrasound Guidance and Monitoring 15 During Radiotherapy, IEEE TBME, 2017(7), Issue Highlight

Visual servoing automatically place probe

Ultrasound probe controlled by robotic arm Real time ultrasound image being registered to reference image

*H.T. Sen et al, Cooperative control with ultrasound guidance for radiation therapy, Frontier Oncology 2016
*H.T. Sen et al, System Integration and In Vivo Testing of a Robot for Ultrasound Guidance and Monitoring 16
During Radiotherapy, IEEE TBME, 2017(7), Issue Highlight

Tracking relies on imaging speed

- Ground truth (optical tracking)
 0.3 Hz, 45° sweeping angle
- → 1 Hz, 15° sweeping angle
- ----- 11 Hz, 3° sweeping angle
- *Collaboration with Drs. Tuathan O'Shea and Emma Harris PhD, Institute of Cancer Research, Royal Marsden

Fast tracking (15ms/frame)

*P. Huang et al, Respiration-Induced Landmark Motion Tracking in Ultrasound Guided Radiotherapy, AAPM 2017, Abstract SU-F-708-4

Biodegradable hydrogel with endoscopic ultrasound guidance

^{*}Z. Feng et al, A Dose Predication Model for Duodenum Sparing in Pancreatic Cancer with Biodegradable Hydrogel Spacer, AAPM2017, Abstract SU-K-FS1-1

Biodegradable hydrogel with endoscopic ultrasound guidance

*P. Huang et al, Real-Time Tracking of Endoscopic Ultrasound Guided Hydrogel Injection Using Template Matching, AAPM 2017, Abstract SU-K-601-17

Biodegradable hydrogel with endoscopic ultrasound guidance

Pre-Injection Plan with PTV priority Duo V15 = 7.07 cc Duo V20 = 3.86 cc (!) Duo V33 = 0.15 cc PTV V33 = 95.01% Pre-Injection Plan with Duo priority Duo V15 = 3.33 cc Duo V20 = 1.27 cc Duo V33 = 0.01 cc PTV V33 = 80.36% (!)

Post-Injection Plan

Duo V15 = 2.02 cc Duo V20 = 0.36 cc Duo V33 = 0.0 cc PTV V33 = 97.87%

21

*A. Rao et al, Novel Use of a Hydrogel Spacer to Separate the Head of the Pancreas and Duodenum for Radiotherapy for Pancreatic Cancer, ASTRO 2017

- Ultrasound guidance can be used for motion monitoring in radiotherapy for pancreatic cancer
- Clinical workflow has to be adapted to incorporate the changes
- Endoscopic ultrasound can guide the injection of hydrogel to potentially reduce the duodenum dose

Acknowledgement USGRT team

- Radiation Oncology
 - John Wong, Lin Su, Yin Zhang, Sook Kien Ng, Junghoon Lee, Ken Wang, Ted Hooker, Joseph Herman, Harry Quon, Phuoc Tran, Danny Song
- Engineering
 - Iulian Iordachita, H. Tutkun Sen, Peter Kazanzides, Muyinatu A. Lediju Bell, Emad Boctor
- Radiology
 - Jinyuan Zhou, Chen Yang
- The Institution of Cancer Research Radiation Oncology
 - Tuathan O'shea, Emma Harris
- University of Pennsylvania Radiation Oncology
 - Haibo Lin
- Shandong Normal University
 - Dengwang Li, Pu Huang, Ziwei Feng

Acknowledgement EUSGRT team

- Radiation Oncology
 - Avani Rao, Joseph Herman, Lauren Rosati, Jeffrey Schultz, Stephen Clarke, John Wong, Amol Narang, Lin Su, Sook Kien Ng, Todd McNutt, Joe Moore, Sierra Cheng
- Gastroenterology
 - Eun Shin, Seonghun Kim
- Surgery
 - Jin He, Richard Burkhart
- Pathology
 - Kevin Waters
- Radiology
 - Michael Schar, Lauri Pipitone, Juls Meyers, Hugh Wall, Jorge Guzman, Eleni Liapi, Stephanie Coquia, Bob De Jong
- Molecular and Comparative Pathobiology
 - Caroline Garrett, Sarah Beck, Anna Goodroe
- Industrial Partners
 - Augmenix (hydrogel): Kolbein Kolste, Patrick Campbell
 - Pentax (EUS): Robin Rynn
- Shandong Normal University
 - Dengwang Li, Pu Huang, Ziwei Feng

Questions

