Provocative Questions for Medical Physics in Oncology

Robert Jeraj
Professor of Medical Physics, Human Oncology, Radiology and Biomedical Engineering
University of Wisconsin Carbone Cancer Center, Madison, WI, USA
rjeraj@wisc.edu

PQ for Med Phys (in Oncology)

- **Goal:** to define highest-level problems in oncology that medical physics should attack
- Two-day meeting on Oct 31/Nov 1 2016 in Boston
- Modelled after NCI's Provocative Questions (great input from Ed Harlow, Harvard University)
- Very diverse panel (see next page)
- Additional input from AAPM membership at large

Participants

- Orly Alter, University of Utah (Physics; Genomics, Signal Processing)
- Robert H. Austin, Princeton University (Physics; Evolution)
- Mike Carducci, Johns Hopkins University (Medical Oncology; Prostate Cancer)
- Mariam Eljanne, NIH/NCI (Microbial Genetics; Physical Sciences in Oncology)
- Sui Huang, Inst for Systems Biology (Molecular/Cell Biology; Complex Systems)
- Glenn Lily, University of Wisconsin (Medical Oncology; Phase I)
- Mike Makrigiorgos, Dana Farber Cancer Institute (Physics; DNA technologies)
- Larry Marks, University of North Carolina (Radiation Oncology; Lung Cancer)
- Lance Munn, Harvard University (Chemical Engineering; Angiogenesis)
- Thea Tlsty, University of California San Francisco (Pathology; Malignancy)
- George Wilding, MD Anderson (Medical Oncology; GU Oncology)
- Rock Mackie, University of Wisconsin (Medical Physics)
- Jeff Siewerdsen, Johns Hopkins University (Medical Physics)
- Thomas Bortfeld, Massachusetts General Hospital (Medical Physics)
- Robert Jeraj, University of Wisconsin (Medical Physics)
1. What are the top 3 unanswered questions in cancer – from your viewpoint (be provocative)? - for MDs only: What are the top 3 unanswered questions in your clinical practice?

2. What is the unique physics angle from which physical scientists can approach these questions?

3. What are the barriers that we face in trying to answer the questions?

Provocative Questions Workshop

- Started with 150+ questions (about half from AAPM members)
- Reduced them to 18 Provocative Questions
- Identified 10 Barriers (see next talk)
- Medical Physics “Translation” remains the main challenge

Examples of Provocative Questions

1. How can we develop physical models of “dose homogeneity” – maintenance of mid-dose, etc. (e.g., fraction, spatial relationship, OARs, dose, etc.)
2. How can we model parameters that distinguish “true heterogeneity” from noisy measurement? What are the challenges?
3. How can we model the parameters to bridge the gap between microscopic and macroscopic science, different model organs?
4. How can we measure these parameters? What tools, in addition to standard tools that we have (e.g., imaging), will we need to develop?

11. How do we model cancer treatment and treatment effects? How can we measure treatment effects (e.g., reduced vascularization in anti-angiogenic treatments), which are necessary, but not sufficient for successful treatment? How does treatment “unmask” heterogeneity to the tissue (tumor and host) – reversing the micro-anatomic phenotypic state? What is the role of information dynamics in cancer treatment (e.g., after catastrophes approaches)?
Provocative Question Translation

- **Pilot** between University of Wisconsin and MGH
- Selected a **PQ paper** (metastases), and started **translation** to medical physics

Article overview

![Diagram of the metastatic process](image)

Physical interactions in invasion

- **Epithelial–Mesenchymal Transition (EMT)** is initial step in invasion
 - Detachment of carcinoma cells from basement membrane (and primary tumor)
 - Tumor cells digest basement membrane
 - Tumor cells traverse ECM in search of blood vessel
 - Mechanical properties (stiffness) of ECM can drive invasion
 - Collagen likely plays a role
 - **In vitro studies** to investigate invasion
 - Cell mobility not always the same and 3D cultures
 - **Intravital microscopy** technique to visit studies and study invasion tissues
Physical interactions in invasion

- **Physics concepts**
 - Can imaging play a larger role in studying tumor cell invasion and related EMT?

- **Discussion**
 - What fraction of tumor cells are actively invading nearby vasculature vs. passively ‘falling into’ tumor vasculature?

PQs: Characters and Forces

- **What are the physical (in addition to biological) factors that drive the different mechanisms of cell migration? [PQ 6]**
 - What are the factors of the cell, and what the factors of the environment driving this?
 - Which of the factors are the most important, most targetable, most measurable?
 - What are the distinct differences between migrating and non-migrating cells?

- **What are the characteristics of metastasizing vs. non-metastasizing cells? [PQ 2,7]**
Future plans

- Increase **Provocative Questions Awareness**
 - Let us know if you are interested!

- Continue **Provocative Questions Translation**
 - Let us know if you are interested!

- Explore **Provocative Questions Funding Opportunity**
 - Let us know if you are interested!

- **International efforts**
 - Europe (ESTRO future workshop in 2018)
 - Australia (EPSM future workshop in 2018)