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TG-211 PET-AS Summary 
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Classification of PET-AS

• Use of pre- and post-processing steps
• Level of automation

• Segmentation/image processing algorithm 
employed and its assumptions and 
complexity
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Classes of PET-AS based on Algorithms
• Fixed and adaptive threshold algorithms
• Advanced algorithms

– Gradient-based segmentation
– Region growing and adaptive region growing
– Statistical-based approaches
– Learning and texture-based segmentation

• Combined with image processing and/or
Reconstruction

• Segmentation of multimodality images
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Thresholding algorithms I

• Thresholding is expressed as follows 
(after images are converted to SUV):

• T could be fixed or adapted 
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Thresholding algorithms II
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Adaptive thresholding example

Biehl et al., JNM, 2006
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Thresholding algorithms III

Pros
• Simple
• Easy to implement

Cons
• Assumes well defined 

object boundary and 
uniform background

• Sensitive to imaging 
acquisition parameters 
(resolution, contrast, 
noise)
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Thresholding Example (good one)

Zaidi et al., 2012
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Thresholding Example (bad one)

Zaidi et al., 2012
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Gradient-based segmentation I
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Pros
• Efficient
• Easy to implement

Cons
• Sensitive to imaging 

acquisition parameters 
(resolution, contrast, 
noise)

• Requires pre-
processing 
(denoising/deblurring

Gradient-based segmentation II
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Gradient-based segmentation III

Geets et al., 2007
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Region growing and adaptive region growing I

• Generally,
1) Start  by a voxel (seed)
2) Check neighboring 

voxels and add them if 
they are similar to seed

3) Repeat (2) until no voxel 
can be added
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Pros
• Efficient
• Easy to implement

Cons
• Sensitive to seed 

selection (initialization)
• Adaptation criteria can 

vary by application

Region growing and adaptive region growing II
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Region growing and adaptive region growing III

Hatt et al., 2017
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Statistical 

• Bayes rule

• Fuzzy Locally Adaptive Bayesian (FLAB)

Where d is posterior distribution with respect to class c a given voxel 
t; f is probability density distribution (Pearson system) and p is prior 
probability

Hatt et al., 2009
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Pros
• Robust
• Flexible
• Incorporate prior 

knowledge (Bayesian)
• Can perform well with 

heterogeneous uptake 
distributions

Cons
• More complex
• May require statistical 

knowledge

• Iterative (slow 
convergence)

Statistical II
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Statistical III

Hatt et al., 2010

Ground truth PET FLAB FCM Thresholding
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Learning and texture-based segmentation algorithms I

• Applies machine learning 
techniques 
– Supervised (NN, SVM, decision 

trees, Random forests, etc)
– Unsupervised (PCA, clustering 

(FCM, K-means, etc)

• Could be feature-based or 
voxel-based
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Pros
• Robust
• Accurate
• Can perform well with 

heterogeneous uptake 
distributions

Cons
• May require training 

(supervised)
– Needs ground truth 

(teacher)
– Time consuming

• Risk of overfitting
• May depend on extracted 

features or selected 
parameters

Learning and texture-based segmentation algorithms II
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Learning and texture-based segmentation algorithms III

Berthon et al, 2016
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Combined with image processing and/or 
reconstruction I

De Bernadi et al, 2009
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Combined with image processing and/or 
reconstruction II

De Bernadi et al, 2009
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Segmentation of multimodality images I

Anatomical 
Imaging

Functional 
Imaging

MRI

CT

PET
SPECT

MRS

PET/
CT

Biophysical Target

Biophysical Target= ( , , ,...)f CT PET MRI
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Fused image accurately
localizes uptake into a
lymph node and thus 
demonstrates spread of 
disease. Fused images
can improve staging of 
head and neck cancer 

CT (anatomy) PET (function)

PET/CT (anatomy+function)

PET/CT example
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GTV-PET/CT

GTV-CT
GTV-PET
GTV-PET/CT
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CT

PET

El Naqa et al, Med Phys, ‘07
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Summary of automated lesion detection in PET

Zaidi & El Naqa, Eur J. Nuc Med, 2010.
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Conclusions

• Different PET-AS algorithms have 
their own pros/cons and selection of 
‘best’ one is a compromise and a 
matter of convenience

• Most PET-AS algorithms are not 
commercially available software


