SAM Imaging Education Course		
90Y-Microsphere Therapy:		
Emerging Trends and Future Direction	ons	
Matt Vanderhoek, PhD		
Henry Ford Health System, Detroit, MI Vanessa Gates, MS		
Northwestern University, Chicago, IL		
S. Cheenu Kappadath, PhD		
MD Anderson Cancer Center, Houston, TX		
AAPM 2017 _M , 30-A063		
MAP W 2017 NO. 30-ANG 3		
	1	
Disclosures		
 Research Grant Support SCK: BTG Biocompatibles Ltd, GE Healthcare 		
S. Cheenu Kappadath, PhD	AAPM 2017 2	
Outline		
Outilile		
 Rationale for 90Y-microsphere therapies – SCK 		
90Y-microsphere devices – MV Imaging for treatment planning, VC		
 Imaging for treatment planning – VG Planning dosimetry – MV 		
■ Post-therapy dosimetry – SCK		
■ Compare dosimetry models – SCK		
 Treatment efficacy and dose response – VG, SCK 		
Closing remarks – ALL		
S. Cheenu Kappadath, PhD	AAPM 2017 3	

 Rationale for Liver Directed Therapy 		
S. Cheenu Kappadath, PhD	AAPM 2017 4	
Rationale for Liver Directed Thera	ару	
 Primary site of disease in hepatocellular carcinoma (HC cholangiocarcinoma 	CC) and	
 Dominant organ of metastases in colorectal and neuroendocrine tumors Resection improves survival in HCC, colorectal and 		
neuroendocrine tumors Colorectal cancer patients: ~50% with liver metastases	,	
dominant cause of death Control of liver disease should increase survival		
S. Cheenu Kappadath, PhD	AAPM 2017 5	
Liver Directed Therapies		
AblationRadiofrequency Ablation (RFA)		
 Microwave Ablation Irreversible Electroporation (IRE) Chemoinfusion 		
- Ports - HAI		
 Trans-arterial Therapies TAE / Bland Embolization TACE 		
Conventional Drug Eluting Bead Radioembolization/SIRT		
- Percutaneous Hepatic Perfusion	44043037	
S. Cheenu Kappadath, PhD	AAPM 2017 6	

Trans-Arterial Therapy Options

TAE TACE TACE SIRT Bland Embolization Embolization of arterial vessels feeding tumors Chemotherapy TACE SIRT Drug-Eluding Beads Radioactive microspheres Embolization of art. vessels + Chemotherapy Chemotherapy Non-embolic Brachytherapy	
S. Cheenu Kappadath, PhD AAPM 2017	7
Rational For Trans-Arterial Therapy Normal liver blood flow - 75% portal vein - 25% hepatic artery Hepatic neoplasm, >3mm metastases - 80- 100% supply from hepatic artery	
Greater vascular density in neoplasm Indications Non surgical candidate Not amenable to ablative therapy Bridge to transplant or operative resection Palliative for liver only or liver dominant disease S. Cheenu Kappadath, PhD AAPM 2017	8
 90Y-microsphere Therapy Trans-arterial delivery of radioactive 90Y-labeled microspheres via a catheter directly at disease sites (targeted infusion) Microspheres (20-30 μm) trapped in tumor capillary vessels due to their embolic size and targeted delivery 	
due to trief emboric size and targeted delivery	

tissue while sparing (more distal) surrounding normal tissue

 β emissions from trapped ⁹⁰Y-microspheres are capable of delivering lethal radiation doses to (proximal) neoplastic

Post-therapy dosimetry		
S. Cheenu Kappadath, PhD	AAPM 2017 10	
^{99m} Tc-MAA	A SPECT/CT	
 Extra-hepatic deposition of MAA is SPECT/CT imaging SPECT based distribution of ^{99m}Tc-N 	MAA with liver (normal liver and	
tumors) is also being used to evaluation microspheres	ate (predict) the distribution of ⁹⁰ Y	
	Detection of Extra-Hepatic MAA Shunting Sensitivity Specificity Planar 32 98 SPECT 41 98 SPECT/CT 100 93	
0/ 100	(Ahmadzadehfar et al, JNM, 2010)	
S. Cheenu Kappadath, PhD	AAPM 2017 11	
	esent the distribution of essent therapy?	
^{99m} Tc-MAA	☑ MAA uptake shown to predict	
tumor response and survival in HCC (Ho et al., EINM 23, 1997) (Garin et al., INM 53, 2012) ☑ Δ uptake between ^{99m} TC-MAA & ⁹⁰ Y		
⁹⁰ Y-microsphere	>20% in 43% (97/225) cases (Wondergem et al., JNM 54, 2013) Image: Differences in catheter location,	
3-Y-microsphere	embolic load, flow dynamics, etc. contribute to differences in MAA & ⁹⁰ Y	
	on post-therapy ⁹⁰ Y SPECT/CT and ⁹⁰ Y ngful for dosimetry I, JNM 51, 2010; Kappadath et al., SNMMI, 2014) Med Comm 33, 2013; Kao et al., EINNMII 3, 2013)	
C Channel Kanadah Dh D	AADMA2017	

^{99m}Tc-MAA versus ⁹⁰Y caveats

S. Cheenu Kappadath, PhD

AAPM 2017 13

Post-therapy: 90Y-SPECT/CT

- 90Y-bremsstrahlung SPECT/CT imaging
 - Evaluate delivery and in vivo distribution of ⁹⁰Y-microspheres
 - No standardized SPECT acquisition & reconstruction established
 - Monte Carlo reconstruction good accuracy but difficult implementation
- Practical 90Y-SPECT/CT reconstruction with quantification
 - $\quad \mathsf{CT-AC}, \mathsf{Scatter}, \mathsf{Collimator\text{-}response}, \mathsf{optimized} \; \mathsf{iterative} \; \mathsf{recon}/\mathsf{filtration}$
 - Total 90Y activity inside liver can be determined with high accuracy (<10%)
 - Post-therapy 90Y-SPECT/CT images can quantified via self-calibration

(Kao et al, EJNMMI 2013)

MDACC 90Y-SPECT/CT

90Y-SPECT/CT Quantitative Accuracy

- Self-calibration approach may introduce systematic bias
 - IEC Phantom calibration errors ~25%
 - Signal outside liver from scatter
- Quantitative ⁹⁰Y SPECT/CT
 - statistical error < 10% but systematic biases exist

(Balagopal et al, Med Phys 2017 submitted)

S. Cheenu Kappadath, PhD

AAPM 2017 16

Post-therapy 90Y-PET/CT

- \bullet $\,^{90}\text{Y}$ also emits $\beta\text{+}$ (E $_{max}\!\sim800$ keV) with BR = 32 x 10 $^{\!-6}$
 - Internal pair-production in the 0+-0+ transition of 90Zr from 90Y decay (first works circa 1955; Selwyn et al, App Rad Iso 65, 2007)
- First clinical ⁹⁰Y PET image published in 2009 (30 min/bed)
- PET/CT provides "quantitative ⁹⁰Y" images with superior spatial resolution
 - Recent papers focus on acquisition parameters and quantitative accuracy

(Carlier et al., EJNMMI Res. 3, 2013)

AAPM 2017 17

90Y-PET/CT Quantitative Accuracy

QUEST Study (69 scanners):

- Background activity within 10%
- Spheres > 2cm underestimated by 20%
- TOF superior to non-TOF PET systems

GE D690 PET/CT:

- 10%-35% bias in mean dose as function
- of 90Y dose or count rate
- independent of total counts

AAPM 2017 18

Compare different dosimetry models

Spatial Representation of Dosimetry Models

Differential DVH: voxel-level doses

AAPM 2017 20

S. Cheenu Kappadath, PhD

Cumulative DVH: voxel-level doses

Voxel Dosimetry: Model Comparison

⁹⁰Y-SIRT for HCC

Different dosimetry models on the same patients with matched VOIs result in <u>large differences</u> for absorbed dose estimates

90Y-SIRT for mNET

TNR variability effects accuracy of PM dosimetry

AAPM 2017 26

Partition model prediction of voxel-level doses have large biases and errors

Mean biases are typically ~ 200%
95% Prediction Interval ~ 130-140 Gy

100 Gy by Standard Model (Package Insert)

≠ 100 Gy by Partition Model

≠ 100 Gy by Voxel Dosimetry

Model → 100 Gy by Voxel Dosimetry

**Chemu Kausadahi, PhD (Mikeli JK, et al. Int J Rad Onc Phys Bio, 96, 2016)

Normal Liver Dose Correlations

- Differences for mean absorbed doses to normal liver are less sensitive to dosimetry model compared to tumor dosimetry
- Dose prediction intervals larger for STD and PM multiple tumor cases

(Mikell JK, et al. Int J Rad Onc Phys Bio, 96, 2016)

. Cheenu Kappadath, PhD AAPM 2017 **28**

 Treatment efficacy and dose response 	
5. Cheenu Kappadath, PhD AAPM 2017 29	
HCC Response Studies	
 Ho et al, EJNM 1997 (SIR-Spheres for HCC) Threshold tumor dose > 225 Gy Increase in OS (4.4 months) with >300 Gy 	
 Garin et al, EJNMMI 2013 (TheraSphere for HCC) Threshold tumor dose > 205 Gy, Sensitivity=100%, Accuracy=90% 	
- Increase in TTP (7.7 months) and OS (11.7 months) TTP UT - 285 Gy OS UT - 285 Gy OT - 2	
# P 0,000	
a to b to	
Partition Model based on MAA uptake 5. Cheenu Kappadath, PhD APM 2017 30	
SIRFLOX – Phase III RCT in CRC	
Progression-Free Survival in the Liver	
07 J	
0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	
7.9 month improvement in median PFS in the liver	
0.0 12 24 36 49 60	
Number at risk Time from Randomization (months)	

HCC Tumor Dose Response

Standard Model Doses

Voxel Dosimetry Doses

Standard model dosimetry used in therapy planning cannot predict tumor response

S. Cheenu Kappadath, PhD

AAPM 2017 32

90Y-SIRT HCC Tumor Dose Response

Knowledge of the tumor-dose response will be useful in planning treatment **prior to** therapy

Knowledge of the tumor dose will be useful in prediction of response status **after therapy**

Kappadath S, et al. J Nucl Med. 2015;56(suppl 3): Abstract 572.

Cheenu Kappadath, PhE

AAPM 2017 33

Response Summary: HCC with mRECIST

Study	Patients Tumors	Device Used	Voxel Dose Image	Dosimetry Model	Threshold Dose
Strigari 2010 ¹	73 Patients >73 Tumors	SIR-Spheres*	90Y SPECT	Voxel	AD50 >97 Gy
Kao 2013 ²	6 Patients 9 Tumors	SIR-Spheres*	90Y PET/CT	Voxel	AD70 >100 Gy
Kappadath 2017 ³	34 Patients 53 Tumors	TheraSphere*	90Y SPECT/CT	Voxel	AD50 >94 Gy (AD50 >154 Gy)
Garin 2013 ⁴	71 Patients >71 Tumors	TheraSphere*	^{99m} Tc-MAA SPECT/CT	Partition	AD50 >205 Gy
Chiesa 2015 ⁵	52 Patients 60 Tumors	TheraSphere*	99mTc-MAA SPECT	Voxel	AD50 >390 Gy

Patient selection (BCLC stage) and treatment volume (whole liver vs lobar vs segmental) have large affects on patient response

1. Strigari L, et al. J Nucl Med. 2010;51:1377-1385. 2. Kao Y-H, et al. J Nucl Med Mol Imaging Res. 2013;3(56):1-13. 3. Kappadath S, et al. J Nucl Med. 2015;56(suppl 3), Abstract 572. 4. Garin E, et al. Eur J Nucl Med Mol Imaging. 2013;40:1057-1068. 5. Chiesa C, et al. Eur J Nucl Med Mol Imaging. 2015;42(11):1758.

S. Cheenu Kappadath, Ph

Closing Remarks		
S. Cheenu Kappadath, PhD AAPM 2017	35	
Discussion		
 Lung Shunt Estimates with Planar imaging has bias and errors MAA is the approved surrogate but it is not a consistently 		
 reliable indicator of microsphere distribution MIRD (package insert) and partition models for dosimetry are rudimentary 		
 Current therapy planning not designed to deliver specific dose to target lesions 		
 Post-therapy imaging is not routine clinical practice. Improvements in emission image quality desired. Image segmentation and dosimetry models used has a 		
profound influence on estimated dose values		
S. Cheenu Kappadath, PhD AAPM 2017	26	
3. Urrenti ropposeti, Prio	30	
Summary		
 Dosimetry models have different levels of bias/uncertainty 100 Gy with STD ≠ 100 Gy with PM ≠ 100 Gy with VD 		
 Caution is warranted when comparing 90Y-SIRT dosimetry between different clinical studies Quantitative post-therapy ⁹⁰Y-imaging can provide tumor and 		
normal liver DHVs The radioembolization community needs standardization to		
aid in interpretation and translation of dose-response relationship between institutions		
S. Cheenu Kappadath, PhD AAPM 2017	37	