Diagnostic Ultrasound Imaging Quality Assurance

James A. Zagzebski¹, Ph.D.

Zheng Feng Lu², Ph.D.

¹Dept. of Medical Physics University of Wisconsin, Madison ²Dept. Of Radiology, University of Chicago, Chicago

CONSIN

Purpose

- Outline a QA program that is
 - Responsive to clinical US lab accrediting bodies, ACR and AIUM
- Effective at detecting some important system flaws
- > Can be carried out effectively by medical physicists
- Discuss advanced tools that may enhance or even serve as an alternative to methods that will be discussed
 - > UltraIQ analysis software for phantom images
 - Aureon transducer tester
- Introduce Doppler tests (currently not required by ACR)

Information on US QA

- Goodsitt M M et al 1998 Real-time B-mode ultrasound quality control test procedures. Report of AAPM Ultrasound Task Group No. 1 Med. Phys. 25 1385
- IEC 61391-1 (2006) Ultrasonics Pulse-echo scanners Part 1: Techniques for calibrating spatial measurement systems and measurement system psf response
- IEC 61391-2 (2010) Ultrasonics- Pulse-echo scanners Part 2: Measurement of maximum depth of penetration and local dynamic range (1996)
 IEC 62736 Ultrasonics (2016) Pulse-echo scanners Simple methods for
- IEC 62736 Ultrasonics (2016) Pulse-echo scanners Simple methods for periodic testing to verify stability of an imaging system's elementary performance
- AIUM 2014, AIUM Quality Assurance Manual for Gray Scale US Scanners.
 King et al, Evaluation of a low cost liquid ultrasound test object for detection of
- transducer artefacts. Phys. Med. Biol. 55 (2010) N557-570.
 Hangiandreou NJ et al, Four-year experience with a clinical ultrasound quality control program. Ultrasound in Med. & Biol. 37: 1350-57, 2011.

Information From US Accreditation Bodies

- Ultrasound Accreditation Program Requirements, Am College of Radiology, (3/22/17 rev) http://www.acraccreditation.org/~/media/ACRAccreditation/Documents/Ultrasound/Requir ements.pdf?la=en
- ACR-AAPM Technical Standard for Diagnostic Medical Physics Performance Monitoring of Real Time Ultrasound Equipment. (2016) https://www.acr.org/-/media/ACR/Documents/PGTS/standards/US_Equipment.pdf
- AIUM 1998, American Institute of Ultrasound in Medicine, Routine Quality Assurance for Diagnostic Ultrasound Equipment. http://aium.s3.amazonaws.com/resourceLibrary/rga.pdf

Annual Surveys, Routine QA (ACR)

Acceptance testing, 6-month Routine QC: optional

Annual surveys: required

- > Physical and and mechanical inspection; sterility
- Image display performance
- > Image Uniformity
- Element "dropout" and other sources on non-uniformity
- > System sensitivity and/or penetration capability
- Geometric measurement accuracy during program initiation (optional for annual survey)
- Contrast resolution, spatial resolution: <u>optional</u> items for annual SURVEY. http://www.acraccreditation.org/Modalities/Utrasound

VISCONSIN Physical and Mechanical Inspection, ACR

Before

- Air filters
- Lights, indicators Wheels, wheel locks
- Proper cleaning (are procedures in place?)
- Viewing monitor, keyboard clean

After

Image Display (Scanner and PACS)

Important for monitor on machine to be set up properly to view all echo levels available and entire gray bar pattern.

- Set up during acceptance testing
 Take steps to avoid casual adjustments (mark or inscribe
- contrast and brightness controls) Most machines provide one or more gray scale test patterns for setup and for routine QC.
- are all gray bars visible? (System, PACS)

Gray bar on GE Logiq 9

Image Display (Scanner and PACS)

- Gain and sensitivity adjustments done using system monitor
- Intrepretation most often done on a PACS workstation.
- Important that there is <u>agreement</u> between image features viewable on <u>PACS</u> and the features seen on the <u>system monitor</u>.
- We were finding that the 15 gray bar pattern built into the machine was not sensitive enough to subtle, but important faults in monitor agreement.

10

System Worksheet, page 2 of Report for each scanner

Keyboard and knobs dean?	©Yes	□No
Monitors Clean?	Styres	No
Air Filters clean?	Yes	SINO
Mechanical and Electrical:		
Wheels fastened securely and rotate easily?	20Yes	□No
Wheel locks work well?	20Yes	□No
Accessories fixed securely?	⊠Yes	□No
Cords attached securely?	Xes	□No
PALS Workstation-System Monitor		
Collidas: allo Brightness between scaliner and workstadurt.		
La poor La Us average 124 La exterienc		
Assessment made from Peril 1& 2 below:		
Generate a cent bar nattern. Save it to BACS		
Number of gray levels seen on the system monitor 15+		
Number of grav levels need on the PACS 15+		_ / /
*Grav bar visualization:	\	
With "natient" registered rush "exam utilities:" rush "test nattern "	· · · · · · · · · · · · · · · · · · ·	
Record an image and compare to the workstation	/	
Count the number of grav levels seen in the room and on the PACS monit	~	•
SMPTE Pattern: 0-5% transition: rean on partern monitor: NO rean on	DACC: YES	
95-100% transition: seen on system monitor: YES_seen on PACS: YES		
	/	
~ ~	-	

Generate a gray bar pattern. Save it to PACS. Number of gray levels seen on the system monitor 15+ Number of gray levels seen on the PACS 15+ <u>SMPTE Pattern: 0-5%</u> <u>transition:</u> System monitor: <u>NO</u> PACS monitor: <u>YES</u> SMPTE Pattern: 95-100% <u>transition:</u> system monitor: <u>YES</u> PACS monitor: <u>YES</u>

Routine QA: Transducers

- Check all transducers on the system
 (most facilities have many interchangeable probes that float among systems; a systematic approach to evaluate all probes should be in place
- Transducer Inspection Delaminations
 - Frayed cables
 - Proper cleaning

www.providian.com

Tests using phantoms. Current materials:

Water-based gels

- <u>Advantages</u>:
 - Speed of sound = 1540 m/s
 Attenuation ~ proportional to frequency
 - (specific attenuation expressed as 0.5 or 0.7 dB/cm-MHz)Backscatter
 - Disadvantages:
 - Subject to desiccation (?)
 - Must be kept in containers
 - Requires scanning window

Tests using phantoms. Current materials:

- Solid, non-water-based materials
- (urethane) Advantages:
 - Not subject to desiccation
 - No need for scanning window; possibility for soft, deformable scanning window
 - Produce tissue-like backscatter
 - Disadvantages:
 - C= 1430-1450 m/s
 - Attenuation ~ proportional to f^{1.6}
 - Surface easily damaged if not cleaned regularly to remove gels

Phantom test 1: Image Uniformity Done with each transducer This example is not a transducer fault, but a TGC problem

Mon-Uniformity caused by element dropout Most frequent fault seen in QA testing Image a phantom using good coupling Search for "shadows" emanating from the transducer Common in new and old probes!

Difficulties with Uniformity

- Visualizing 1-2 element dropouts
- · Use persistence; translate transducer.

Discretional Content of the second se

- AAPM Ultrasound Subcommittee Task Group
- Record a <u>cine loop</u> while translating the transducer⊥ to the image plane.
- Compute the <u>'median'</u> image for this (~100) image loop

 A dip >3dB and more than 2 elements wide is worth counting as a defect of possible concern.

Difficulties with Uniformity (coupling) Solution 3: Use a phantom having concave windows

Gammex 410

Transducer worksheet part of UW Report

Instructions, uniformity ratings (UW-Madison, not other groups, such as AAPM): 1 = uniform

2=minor inhomogeneity (no more than 2 minor dips)

3=Significant inhomogeneities; transducer is functional, but consider replacing 4=Immediate repair or replacement recommended

Data table (1 line for each transducer)

Transducer ID/Serial Number	Cables/ cracks/ delaminate		Uniformity, dropout		Sensitivity (Depth of Penetration) (MHz/cm)	Geometric Accuracy H: cm/actual cm V: cm/actual cm	Conclusions and recommendations
	ОК	No	ОК	No			
C1-5 79635YP9	8				5MHz/13.71cm) H5MHz/10.6 cm	H: 5.81/6 V: 8.01/8	Uniformity Rating 1 DOP ≈ to previous results ⊠ Yes □ No Click here to enter comments.

Aureon by ACERTARA

Device to test ultrasound transducers

- 2D matrix receiver captures energy profile of transducer while running on the scanner system
- All 1-D and 2-D transducers from any manufacturer
- All operating modes, including
- ARFI and shear wave imaging
- Assesses lens stability over time
 Detential to calculate acoustic des
- Potential to calculate acoustic dose

Sensitivity, Maximum Depth of Penetration

- Considered by many as a good overall check of the integrity of the system
- FOV at 18 cm (or set to match the phantom/transducer capabilities)
- Output power (MI) at max
- Transmit focus at deepest settings
- Gains, TGC for visualization to the maximum distance possible

Maximum "Relative" Depth of Penetration

How far can you see the speckle pattern in the material?

40

Objective Maximum Depth of Visualization

- Shi, Al-Sadah, Mackie, Zagzebski, Signal to Noise Ratio Estimates on Ultrasound Depth of Penetration (abstract only), *Medical Physics 30*: 11367, 2003.
- Gorny, Tradup, Bernatz, Stekel, and Hangiandreou, "Evaluation of an Automated Depth of Penetration Measurement for the Purpose of Ultrasonic Scanner Comparison", (abstract only), J. Ultrasound Med 23: S76, 2004.
- Rubert, et al, Automated Depth of Penetration Measurements for Quality Assurance in Ultrasound (Abstract only), Medical Physics 5/42, 11367, 2015.
 Specified in IEC International Standards 61391-2 (2010) and 62736
- Specified in IEC International Standards 61391-2 (2010) and 62730 ("Maximum <u>Relative</u> Depth of Penetration" in 62736)
- Compute mean pixel value vs. depth for
- phantom (signal+noise) and for noise only (noise)
 Depth where (signal+noise)/noise = 1.4 =DOP
- Depth where (signal+noise)/noise = 1.4 =DO

ons,						
orm or inh ificar iediai	nomog nt inh	rmity genei omog pair o	ratin ty (n jenei r rep	gs (UW-Madiso o more than 2 i ties; transducer lacement recon	n, not other gr minor dips) is functional, t mended	oups, such as AAPM) out consider replacing
le (1	line f	for ea	ich tr	ansducer)		
Cables/ Uniformi cracks/ dropout al delaminate		Jniformity, Jropout Sensitivity (Depth of Penetration) (MHz/cm)		Geometric Accuracy H: cm/actual cm V: cm/actual cm	Conclusions and	
OK	No	ок	No			
8	_	8		5MHz/13.71cm	H: 5.81/6	Uniformity Rating 1 DOP ≈ to previous results ⊠ Yes □ No Click bore to cotor
	or inh ificar edia edia le (1 Cable cracks delam OK	rinhomog ficant inhi ediate rep e (1 line f Cables/ cracks/ delaminate OK No	r inhomogenei ficant inhomog ediate repair o le (1 line for ea Cables/ delaminate OK No OK	ri rihomogeneity (n ficarti rihomogenei ediate repair or repe e (1 line for each tr Cables/ uniformity, cracks/ OK No OK No 0K No OK No	Cables/ OK No OK No OK No OK No OK No SMHz/13.71cm SMHz/13.71cm	Cables/ OK No OK No OK No SMHz/13.71cm H: 5.81/16 0 0 0 5MHz/13.71cm H: 5.81/16 Cables/ Cables/ Contactual cm

*Goodsitt M M et al 1998 Real-time B-mode ultrasound quality control test procedures. Report of AAPM Ultrasound Task Group No. 1 Med. Phys. 25 1385

Distance Measurement Accuracy: Horizontal

- Actual 6.0 cm
- Measure 6.05 cm
- □ error < .8%
- Acceptable
 - *Action: >2mm or 2% *Defect: >3mm 0r 3%

*Goodsitt M M et al 1998 Real-time B-mode ultrasound quality control test procedures. Report of AAPM Ultrasound Task Group No. 1 Med. Phys. 25 1385

Routine QA (ACR General US Program)

Distance Measurement Accuracy tests

- > Necessary? ("Scanner is a transducer tied to a computer.")
- May be important for specific uses
 - Images registered from 3-D data sets
 - Workstation measurements
 - Radiation seed implants

Routine QA (ACR General US Program)

WISCONSIN		UW	' Re	por	t Transduce	r workshee	t (page 3)
Instructions, uniformity ratings (UW-Madison, not other groups, such as AAPM): 1=uniform 2=minor inhomogeneity (no more than 2 minor dips) 3=Significant inhomogeneities; transducer is functional, but consider replacing 4=Immediate repair or replacement recommended Data table (1 line for each transducer)							
Transducer ID/Serial Number OK No OK No		Sensitivity (Depth of Penetration) (MHz/cm)	Geometric Accuracy H: cm/actual cm V: cm/actual cm	Conclusions and recommendations			
C1-5 79635YP9	8		8		5MHz/13.71cm H5MHz/10.6 cm	H: 5.91/6 V: 8.01/8	Uniformity Rating 1 DOP ≈ to previous results ⊠ Yes □ No Click here to enter comments.

Spatial Resolution?

- Not done routinely
- 2 image sets, each taken with a different speed of sound assumption in the beam former
- Targets not agreed on universally
 - Anechoic objects get fuzzy
 with poorer resolution
 - · Line targets get wider
- Requires standardized gain settings to make meaningful
- Enhance using computational methods to measure point spread function width?

Image of a phantom is useful for qualitative comparisons!

Conventional Spatial Compounding Images obtained during routine Breast QC testing, 3/2010

ISCONSIN	4-year E control p (Hangiandree	xperience with a rogram, ou et al., Ultrasound Me	a clinical ultras ed Biol 37, 1350-1357	sound quality
E	valuation Method	# of detected "failures"	% of detected "failures"	Recommendation
М	lechanical Integrity	47	25.1	Quarterly
In	nage uniformity	124	66.3	Quarterly
D	istance Accuracy	0	0.0	Annually
D	OP (penetration)	3	1.6	Annually, (if done with software)
С	linical Problems	13	7.0	Sonographer's daily inspections
Т	OTAL	187	100.	

Future

- Incorporate computational methods for more objective tests
- Expand to other operating modes
 - > Pulsed Doppler
 - Sensitivity (signal to noise at a given depth, for both fast and slow flow conditions)
 - · Velocity accuracy
 - · Directional Discrimination; gate accuracy, etc.
 - · Volume flow
 - · QIBA volume flow project (just starting)
 - > Color flow
 - Elasticity, shear wave (SW) imaging ≻
 - QIBA work on SW velocity in liver (advanced stages)

With a wedge offset, tilting the transducer to enable a 60° Doppler angle.

System with poor directional detection. Flow appears to be bidirectional, even though it is only Medical Physics Dept. from right-to left..

signal, lower apparent

WISCONSIN	Summary
 Setti forw 	ng up, maintaining an equipment QA program is straight ard
• The ≻ D	ACR listed procedures form a useful, basic QA program irected by physicist or lab personnel tegrated effort including lab and technical staff
> R	equires a Phantom Isselv correlates with All IM list of factors needing to be
te	ested
fault	in today's scanning machines

Computational methods can be developed for objective tests