EXPERIENCE BUILDING A LEARNING HEALTH SYSTEM AND DECISION SUPPORT IN RADIATION ONCOLOGY

Todd McNutt PhD
Associate Professor
Radiation Oncology
Johns Hopkins University

Disclosures

This work has been partially funded with collaborations from:

Philips Radiation Oncology Systems
Elekta Oncology Systems
Toshiba Medical Systems

as well as

Commonwealth Foundation
Maritz Foundation

Which patient will do better?

85-year-old man with T3 N2b M0 Stage IV A Squamous cell carcinoma, NOS of the Right Malignant neoplasm of larynx

85-year-old man with T3 N2b M0 Stage IV A Squamous cell carcinoma, NOS of the Malignant neoplasm of tonsil
Types of Clinical Data

- Clinician Assessments
 - Quality of life
 - Toxicity and complications
- Patient Reported
 - Quality of life
 - Toxity and complications
- Biospecimen
 - Labs
 - Pathology
- Image derived features
 - Radiomics
- Treatment
 - Radiation Dosimetry
 - Surgery
 - Chemotherapy
- Symptom management
 - Nutritional support
 - Pain medications

Learning health system

- Knowledge Database
- Predictive Modeling
- Presentation of Predictions
- Decision Point
 - Facts
 - Controls
 - Outcomes
 - Time
 - Data Feedback
 - (Facts, Outcomes)

Oncospace Consortium Repository

- It’s all about the data
- Knowledge Base
- Registry
- Quality Reporting
- Decision Support
- Research
- John Hopkins
- U. Washington
- M. Samuels
- Sunnybrook
- U. Virginia
- Johns Hopkins
- Institution X
- N, S, Pt
- $/pt

Quality Reporting

Decision Support

Research
Consortium Status
Michael Bowers MS

University of Washington
Prostate – 1800 Pt
Pancreas - 500 Pt
Thoracic - 720 Pt
Head/Neck - 1300 Pt

University of Virginia
Prostate – 1000 Pt
Pancreas - 500 Pt
Thoracic - 200 Pt

University of Toronto
Head/Neck – 100 Pt

Johns Hopkins SOM
NKI*
Prostate – 20 Pt

Michael Bowers MS

Precision Radiotherapy Treatment

Shape-dose relationship for radiation plan quality

For a selected Organ at Risk and %V, find the lowest dose achieved from all patients whose %V is closer to the selected target volume?

Dose prediction

Decisions:
- Plan quality assessment
- Automated planning
- IMRT objective selection
- Dosimetric trade-offs
Promote Culture of Data Collection
Data collected over entire treatment

At what point do we have enough data to make decisions based on future predictions?

Input Variables => Prediction?

Extract, Transform, Load

- SQL Query
- Lab, Toxicity, Assessments

Head and Neck Inventory
~1000 pts up to 6 yr follow up
Toxicity and Dose Volume Histogram
(Scott Robertson et al...)

The Data Modeling Culture

Statistical Modeling: The Two Cultures
Lee Breiman

The Algorithmic Modeling Culture

Results: Weight loss prediction at planning
Endpoint: > 5kg loss at 3 months post RT

- Predictors:
 - (1) Diagnosis (ICD-9 code)
 - (2) Dosimetry: dose to swallowing muscles, larynx, parotid
 - (3) Patient: age

- Prediction result: High negative predictive value
 - The model can screen out patients without weight loss
 - Physicians can focus on patients with high probability of weight loss

Sierra Zhi Cheng MD MS
Minoru Nakatsagawa PhD

Prediction result

<table>
<thead>
<tr>
<th></th>
<th>AUC</th>
<th>Sensitivity</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.773</td>
<td>0.768</td>
<td>0.426</td>
<td>0.905</td>
</tr>
</tbody>
</table>
Results: Weight loss prediction during RT

- Predictors:
 - (1): QOL, patient reported oral intake
 - (2): Diagnosis and staging, ICD-9, N stage
 - (3): Dosimetry, dose to larynx, parotid
 - (4): Toxicity, skin toxicity, nausea, pain
 - (5): Geometry, minimum distance b/w PTV, larynx

<table>
<thead>
<tr>
<th>Prediction result</th>
<th>AUC</th>
<th>Sensitivity</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.821</td>
<td>0.977</td>
<td>0.862</td>
<td>0.986</td>
</tr>
</tbody>
</table>

Results of Decision Support for Weight Loss

Included radiomic features of the parotid glands

Pancreas Resectability

(S. Cheng et al.)
Xerostomia results

Study population

- **N = 319**
- **Age (mean ± sd) = 57.82 ± 11.10**
- **Male: 76.8%**
- **Caucasian: 75.69%**
- **Tobacco use history: 56.84%**
- **Alcohol use history: 48.32%**

<table>
<thead>
<tr>
<th>Chemotherapy</th>
<th>HPV</th>
<th>Weight loss</th>
<th>Parotid D95</th>
<th>Submandibular D70</th>
</tr>
</thead>
<tbody>
<tr>
<td>61.34%</td>
<td>57.99%</td>
<td>9.23 ± 7.42</td>
<td>10.88 ± 6.33</td>
<td>55.72 ± 12.80</td>
</tr>
</tbody>
</table>

Reference

- **Severe xerostomia**
 - 125 (39.18%)
 - 194 (60.82%)

- **Chemotherapy**: 80%
- **HPV**: 78.57%
- **Weight loss**: 5.36 ± 5.87
- **Parotid D95**: 6.6 ± 5.03
- **Submandibular D70**: 41.94 ± 23.59

- **Combined parotid volume < 70.2**:
 - **N = 100**
 - **Low grade xerostomia**:
 - **N = 45**
 - 80%
 - **Low grade xerostomia**:
 - **N = 18**
 - 78%
 - **Severe xerostomia**:
 - **N = 56**
 - 53% severe

- **Ever smoker**
 - **N = 26**
 - 62%

- **Low grade xerostomia**
 - **N = 56**

- **Primary tumor stage 0 or 1**
- **Age < 51**
- **KPS < 85**

- **African American, Caucasian, Declined, Unknown or others**
- **Ethnicity**

- **Weight loss < Parotid D95 dose < 9.26 Gy**
- **Parotid mean dose < 9.07 Gy**

Results

ROC curves of prediction using parotid D95 and parotid mean dose

- **CART with 10-fold cross-validation to compare prediction power using parotid D95 and parotid mean dose**

<table>
<thead>
<tr>
<th>Parotid D95</th>
<th>0.691</th>
<th>0.639</th>
<th>0.640</th>
<th>0.674</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parotid mean dose</td>
<td>0.561</td>
<td>0.561</td>
<td>0.702</td>
<td>0.413</td>
</tr>
</tbody>
</table>

Accuracy: the weighted average of a test’s sensitivity and specificity
Xerostomia prevalence separated by age = 51

![Xerostomia prevalence graph]

Parametric Shape-Based Features

What are they?
- Consistently identifiable substructures that characterize a region of interest
- Based on geometric image manipulation

How are they calculated?
- Regions of interest are normalized to a common atlas anatomy
- Features are calculated based on predefined parameters, such as expansion/contraction, slicing, etc.

Defining a Feature

- Transformations can be composed to create more complicated features

Shells+Octants Feature: Defined by expansion, contraction, and partitioning into octants about the origin. Shown here applied to a parotid gland.
Compute Dose to a Feature

• Dose distribution can be mapped onto each sub-structure

Visualization of a parotid gland with dose mapping

Shell created from surface of parotid to 2mm expansion with dose mapping

Spatially dependent features of dose in the structures (F. Marungo et al.)

<table>
<thead>
<tr>
<th>Method</th>
<th>Value distribution</th>
<th>NTCP LKB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bagged Naive Bayes (1000 Iterations)</td>
<td>0.915</td>
<td>0.743</td>
</tr>
<tr>
<td>Bagged Linear Regression (1000 Iterations)</td>
<td>0.905</td>
<td>0.737</td>
</tr>
<tr>
<td>Naive Bayes</td>
<td>0.900</td>
<td>0.734</td>
</tr>
<tr>
<td>Linear Regression</td>
<td>0.896</td>
<td>0.731</td>
</tr>
<tr>
<td>Random Forest (1000 trees)</td>
<td>0.724</td>
<td>0.683</td>
</tr>
<tr>
<td>WTDCP</td>
<td>0.596</td>
<td>0.700</td>
</tr>
</tbody>
</table>
Needs…

- For the vision of a learning health system, significantly improved user interfaces are required
- In order to present a prediction, we must first present the “quantitative” patient state
- More continuous assessment of patient condition is needed through mobile devices
- Stronger linkages between genomic, pathology and clinical databases

Summary

- We can quantify the patient experience and are improving our capabilities rapidly
- It is possible to collect and house RT data/knowledge in a clinical setting
- Current shape-based auto-planning utilizes a learning health system
- Data science models are maturing that can convert the knowledge to clinical predictions
- Sharing data across institutions allows for experience and expertise sharing

…we have work to do which requires real partnerships between clinicians and informaticists

Acknowledgments

- JHU - CS
 - Ruze Taylor PhD
 - Misha Kazhdan PhD
 - Fumbeya Murango BS
- Philips PROS
 - Karl Brakusa BS
- Toshiba
 - Minoru Nakatsugawa PhD
 - Bobby Davey PhD
 - Rachel Louise Koktava
- Elekta
 - Bob Hubbell
- University of Washington
 - Kim Evans MS
 - Mark Philips PhD
 - Kristi Hendrickson PhD

- JHU - RO
 - Sierra Cheng MD
 - Michael Bowen BS
 - Joseph More PhD
 - Scott Robertson PhD
 - Praneet Koktava
 - Xuan Hu MD
 - John Wing PhD
 - Theodore DeWeese MD
 - GI Team
 - Joseph Herron MD
 - Amy Hacket-Probst PA
 - H&N Team
 - Harry Quan MD
 - Arv Kshet MD
 - Toronto Sunnybrook
 - William Song PhD
 - Patrick Kwok

- JHU - RO
 - Sierra Cheng MD
 - Michael Bowen BS
 - Joseph More PhD
 - Scott Robertson PhD
 - Praneet Koktava
 - Xuan Hu MD
 - John Wing PhD
 - Theodore DeWeese MD
 - GI Team
 - Joseph Herron MD
 - Amy Hacket-Probst PA
 - H&N Team
 - Harry Quan MD
 - Arv Kshet MD
 - Toronto Sunnybrook
 - William Song PhD
 - Patrick Kwok
Xerostomia Prediction

Study Design
- **Primary outcome**: Xerostomia grade (CTCAE v4.0) at 90 - 150 days after RT
 - Grade 2 & 3 – severe xerostomia
 - Grade 0 & 1 – reference
- **Confounding factors**
 - **Time-fixed parameters**: age, gender, race, chemotherapy, smoking status, alcohol use, HPV status, tumor stage (T, N, M, overall), Karnofsky Performance Scale (KPS), tumor site, volume of salivary glands, dosimetric factors
 - **Time-varying parameters**: weight, taste function

Results

Backward stepwise elimination

<table>
<thead>
<tr>
<th>OR</th>
<th>p-value</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Parotid D95</td>
<td>1.15</td>
<td><0.001</td>
</tr>
<tr>
<td>Submandibular D70</td>
<td>1.04</td>
<td><0.001</td>
</tr>
<tr>
<td>Submandibular D60</td>
<td>1.05</td>
<td>0.036</td>
</tr>
<tr>
<td>alpha</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Parotid D95</td>
<td>1.15</td>
<td><0.001</td>
</tr>
<tr>
<td>Submandibular D70</td>
<td>1.04</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Parametric modeling – Univariate Analyses

<table>
<thead>
<tr>
<th>Parameters</th>
<th>OR</th>
<th>p-value</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemotherapy</td>
<td>ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>2.52</td>
<td><0.001</td>
<td>[1.49, 4.26]</td>
</tr>
<tr>
<td>HPV</td>
<td>ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>2.67</td>
<td><0.001</td>
<td>[1.32, 5.38]</td>
</tr>
<tr>
<td>Weight loss at 1st visit</td>
<td>ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 kg</td>
<td>2.58</td>
<td><0.001</td>
<td>[1.62, 4.09]</td>
</tr>
<tr>
<td>> 5 kg</td>
<td>1.15</td>
<td><0.001</td>
<td>[1.09, 1.21]</td>
</tr>
<tr>
<td>Parotid D95</td>
<td>1.04</td>
<td><0.001</td>
<td>[1.02, 1.06]</td>
</tr>
<tr>
<td>Submandibular D70</td>
<td>1.04</td>
<td>0.033</td>
<td>[1.00, 1.08]</td>
</tr>
<tr>
<td>Parotid mean dose</td>
<td>1.04</td>
<td>0.033</td>
<td>[1.00, 1.08]</td>
</tr>
</tbody>
</table>