

A JOHNS HOPKINS

EXPERIENCE BUILDING A LEARNING HEALTH SYSTEM AND DECISION SUPPORT IN RADIATION ONCOLOGY

Todd McNutt PhD Associate Professor Radiation Oncology Johns Hopkins University

Disclosures

JOHNS HOPKINS

JOHNS HOPKINS

This work has been partially funded with collaborations from:

Philips Radiation Oncology Systems Elekta Oncology Systems Toshiba Medical Systems

as well as Commonwealth Foundation Maritz Foundation

69-year-old man with T3 N2b M0 Stage IVA Squamous cell carcinoma, NOS of the Right Malignant neoplasm of tonsil

Which patient will do better?

 Image derived features (Radiomics)

8/1/2017

A JOHNS HOPKINS

JOHNS HOPKINS Learning health system Decision Point Controls Facts - Outcomes time _ት Γ £ 1 ¥ Decisions Knowledge Presentation of Fact Controls Predictions Database V Predictive Predicted Outcomes Modeling £ Data Feedback (Facts, Outcomes)

Toxicity Preval	ence Xerostomia	
Prevalence Select criteria: Xensterns Select criteria: Xensterns Select treads to view: Accession of 1	<3 <2	<1
Timespan: 7 days • Timespan: 2 years • Muccositis<2	Vee St St Vee V	2 yrs
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	xerostomia	<2
Discrete di constructione di constructio	Taste(Dysgeusia))<1	
0 Dysphagia < 1	50 Time interval: 7 days Mucosilis CTC3 = 2 Task Disturbance (Draceusia) = 1 Task Disturbance (Draceusia) = 1	2 4 yrs

Toxicity and Dose Volume Histogram

Statistical Solowa 2001, Vol. 36, No. 5, 109–101

nature

The Algorithmic Modeling Culture

August 1, 2017

y 🗲

20

JOHNS HOPKINS

JOHNS HOPKINS

Results of Decision Support for Weight Loss

Included radiomic features of the parotid glands

	Sensitivity	Specificity	PPV	NPV	FP	FN	Accuracy	Kappa
CDSS alone	78.3	62.5	75.8	65.8	24.2	34.2	72.0	0.42(0.23, 0.59)
MD alone	68.8	41.9	64.0	47.2	36.1	52.8	58.0	0.11(0.01, 0.21)
Dr. A	21.7	85.0	68.4	42.0	31.6	58.0	47.0	0.07(-0.07, 0.19)
Dr. B	63.3	57.5	69.1	51.1	30.9	48.9	61.0	0.20(0.01, 0.40)
Dr. C	91.7	20.0	63.2	61.5	36.8	38.5	63.0	0.13(.0.03, 0.29)
Dr. D	98.3	5.0	60.8	66.7	39.2	33.3	61.0	0.04(-0.05, 0.13)
MD + CDSS	83.8 8	30.6	64.4	55.7	35.6	44.3	62.5	0.16(0.06, 0.25)
Dr. A	55.0	62.5	68.8	48.1	31.3	51.9	58.0	0.17(-0.02, 0.35)
Dr. B	81.7	57.5	74.2	67.7	25.8	32.4	72.0	0.40(0.22, 0.59)
Dr. C	98.3	0	59.6	0	40.4	100	59.0	-0.02(-0.06, 0.02)
Dr. D	100.0	2.5	60.6	100	39.4	0	61.0	0.03(-0.03, 0.09)

Xerostomia Prediction (3-6 Months post RT) 🍐 MINS HOPKINS YES Parotid D95 dose < 9.26 Gy NO 0 < 0 0 N=58 N=26 N=16 N=10 (N = 80) (N = 10) (N = 45) N = 18 N = 56
 62% Low
 56% Low
 80% Low

 grade
 grade
 grade

 xerostomia
 xerostomia
 xerostomia

 tivity
 Specificity
 Yuon
 84% Low 100% Low 80% Low grade grade grade grade verostomia verostomia xerostomia 78% Low grade xerostomia 53% sev 88% sev mia Sensitivity AUC Accuracy Xuan Hui MD MS 0.627 0.687 0.536 0.784

Results

JOHNS HOPKINS

ROC curves of prediction using parotid D95 and parotid mean dose

Parametric Shape-Based Features

JOHNS HOPKINS

What are they?

- Consistently identifiable substructures that characterize a region of interest
- Based on geometric image manipulation

How are they calculated?

- Regions of interest are normalized to a common atlas anatomy
- Features are calculated based on predefined parameters, such as expansion/contraction, slicing, etc.

Defining a Feature

JOHNS HOPKINS

 Transformations can be composed to create more complicated features

Shells+Octants Feature: Defined by expansion, contraction, and partitioning into octants about the origin. Shown here applied to a parotid gland.

Compute Dose to a Feature

 Dose distribution can be mapped onto each substructure

parotid to 2mm expansion with dose mapping

Compute Dose to a Feature

JOHNS HOPKINS

JOHNS HOPKINS

Dose distribution can be mapped onto each sub-structure

Shown here, a visualization of the dose mapped onto each octant of a parotid gland.

Color map is relative to each subsection

Spatially dependent features of dose in the structures (F. Marungo et al.)

n A JOHNS HOPKINS

Method	Voice dysfunction n=99, n_=8, n_=91	Xerostomia n=364, n ₊ =275, n ₋ =89
Bagged Naïve Bayes (1000 iterations)	0.915	0 7/3

aïve Bayes (1000 iterations)	0.915	0.743
near Regression (1000 iterations)	0.905	0.737
95	0.900	0.734
ression	0.896	0.731
orest (1000 trees)	0.724	0.683
	0.596	0.700

JOHNS HOPKINS

Needs...

•

For the vision of a learning health system, significantly

- improved user interfaces are required In order to present a prediction, we must first present the ٠
- "quantitative" patient state
- More continuous assessment of patient condition is needed through mobile devices
- Stronger linkages between genomic, pathology and clinical databases

8/1/2017

Summary

JOHNS HOPKINS

34

- We can quantify the patient experience and are improving our capabilities rapidly
- It is possible to collect and house RT data/knowledge in a clinical setting •
- · Current shape-based auto-planning utilizes a learning health system
- Data science models are maturing that can convert the knowledge to clinical predictions •
- Sharing data across institutions allows for experience and expertise sharing •

...we have work to do which requires real partnerships between clinicians and informaticists

Acknowledgments

JHU-RO

.

- Sierra Cheng MD
 Michael Bowers BS
- Michael Bowers BS Joseph Moore PhD Scott Robertson PhD Pranav Lakshminarayanan Xuan Hui MD
- John Wong PhD Theodore DeWeese MD
- GI Team
- Joseph Herman MD
 Amy Hacker-Prietz PA

- Amy Hacker-Prietz
 H&N Team
 Harry Quon MD
 Ana Keiss MD
 Toronto-Sunnybrook
 William Song PhD
 Patrick Kwok

JOHNS HOPKINS

- JHU CS
- Russ Taylor PhD Misha Kazhdan PhD
- Fumbeya Murango BS Philips PROS

Karl Bzdusek BS

- Toshiba
- Minoru Nakatsugawa PhD -Bobby Davey PhD Rachel-Louise Koktava John Haller

Elekta

- Bob Hubbell University of Washington
- Kim Evans MS Mark Philips PhD Kristi Hendrickson PhD

Xerostomia Prediction

Study Design

- <u>Primary outcome</u>: Xerostomia grade (CTCAE v4.0) at 90 150 days after RT
 - Grade 2 & 3 severe xerostomia
 - Grade 0 & 1 reference
- <u>Confounding factors</u>
 - *Time-fixed parameters*: age, gender, race, chemotherapy, smoking status, alcohol use, HPV status, tumor stage (T, N, M, overall), Karnofsky Performance Scale (KPS), tumor site, volume of salivary glands, dosimetric factors
 - *Time-varying parameters*: weight, taste function 37

Results

JOHNS HOPKINS

JOHNS HOPKINS

Backward stepwise elimination

	OR	p-value	95% Confidence Interval
alpha = 0.05			
Parotid D95	1.15	< 0.001	[1.09, 1.21]
Submandibular D70	1.04	< 0.001	[1.01, 1.05]
Submandibular D60	1.05	0.036	[1.02, 1.07]
alpha = 0.01			
Parotid D95	1.15	< 0.001	[1.09, 1.21]
Submandibular D70	1.04	< 0.001	[1.01, 1.05]

38

llts			4
netric modeling	– Univ	variate	Analyses
Parameters	OR	p-value	95% Confidence Interval
Chemotherapy			
No	ref.		
Yes	2.52	0.001	[1.49, 4.26]
HPV			
No	ref.		
Yes	2.67	< 0.001	[1.32, 5.38]
Weight loss at 1 st visit			
$\leq 5 \text{ kg}$	ref.		
loss > 5 kg	2.58	<0.001	[1.62, 4.09]
Parotid D95			
	1.15	<0.001	[1.09, 1.21]
Submandibular D70			
	1.04	<0.001	[1.02, 1.06]
Parotid mean dose			
	1.04	0.023	[1.01, 1.08]