Display Quality Assurance: Recommendations from AAPM TG270 for Tests, Tools, Patterns, and Performance Criteria

Nicholas B. Bevins, Ph.D. TG270 Co-chair

Display Check

TG270 Goals

- Provide an update to the TG18 report
 - Test methodology
 - Test criteria
 - Test frequency
 - Test patterns

Outline

- Display Classifications
 - Diagnostic
 - Non-diagnostic
- Display Test Patterns
 - Existing Patterns
 - New Patterns
- Display Performance Evaluation

- Four classifications based on use
 - Diagnostic Displays
 - Non-diagnostic Displays (TG18 "secondary displays")
 - Modality Displays
 - Clinical Specialist Displays
 - Electronic Health Record (EHR) Displays

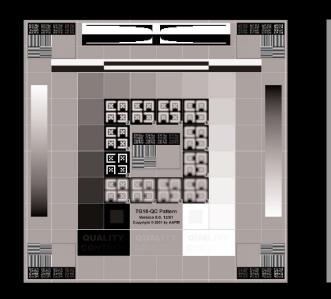
- Diagnostic Displays (TG18 "primary displays")
 - Primary interpretation of medical images
 - Improved performance characteristics
 - Luminance stability (both in level and uniformity)
 - Smaller pixel pitch
 - Lower noise
 - Greater bit depth
 - Self-testing functionality
 - Stringent performance criteria
 - High cost
 - Does not include navigation displays

- Modality Displays
 - Displays used during acquisition and generation of medical images
 - May or may not be attached to modality
 - Only displays that show images (not for acquisition control)
- Clinical Specialist Displays
 - Review of images before or independently of primary radiology read
 - ER, surgical environments
 - Patient care decisions, often before primary read by radiologist

EHR Display

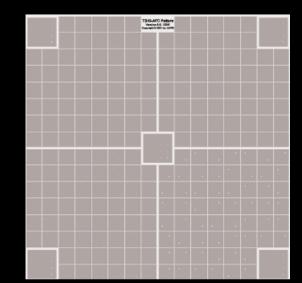
- Images used to review images following interpretation
 - Referring physicians offices
 - Exam room with patient
 - Pre-surgical planning
- The goal of display QA is consistent image presentation across all displays (image review chain)
 - Similar goals, but different tolerances, tests, frequencies

Outline

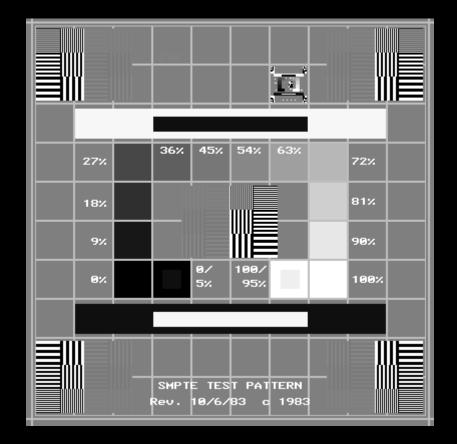


- Display Classifications
 - Diagnostic
 - Non-diagnostic
- Display Test Patterns
 - Existing Patterns
 - New Patterns
- Display Performance Evaluation

Existing Test Patterns



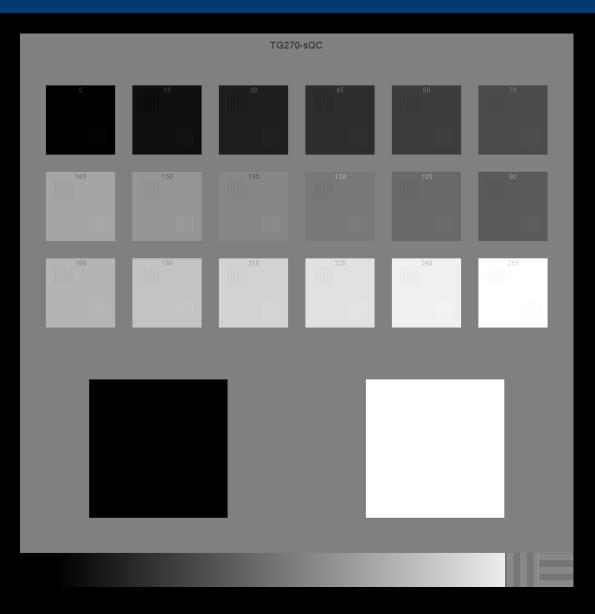
- TG18-QC
- TG18-LN
- TG18-UN
- TG18-AFC



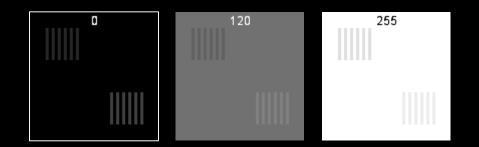
Existing Test Patterns

SMPTE

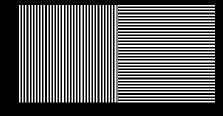
"As a result of the pattern's grayscale insensitivity and CRT-specific features, this report considers the SMPTE test pattern deprecated for qualitative display evaluation in favor of either quantitative measurement or updated test patterns."



New Patterns – TG270-sQC



 Simple QC test pattern for routine checks by users, technologists, physicists

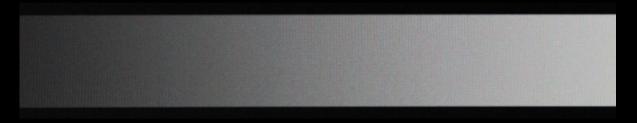


New Patterns – TG270-sQC

 Low contrast test patterns at multiple gray levels

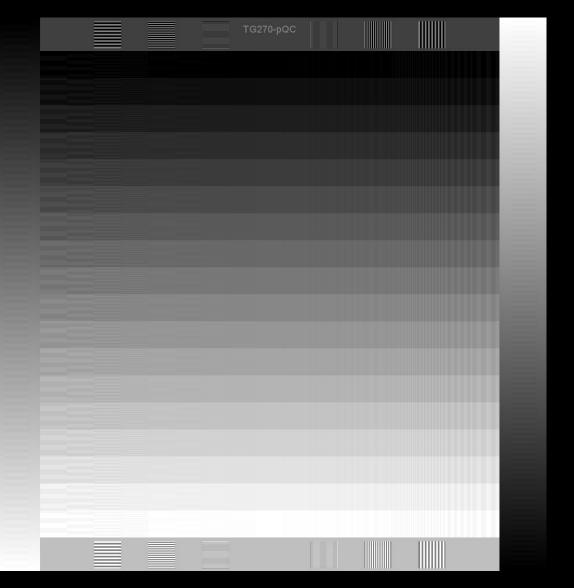
Spatial resolution verification

 Luminance patches for uniformity and min/max measurements



Continuous Gradient Effects

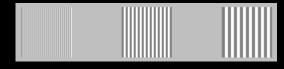
No issues


Mis-calibrated gray level

Bit-depth configuration error

New Patterns – TG270-pQC

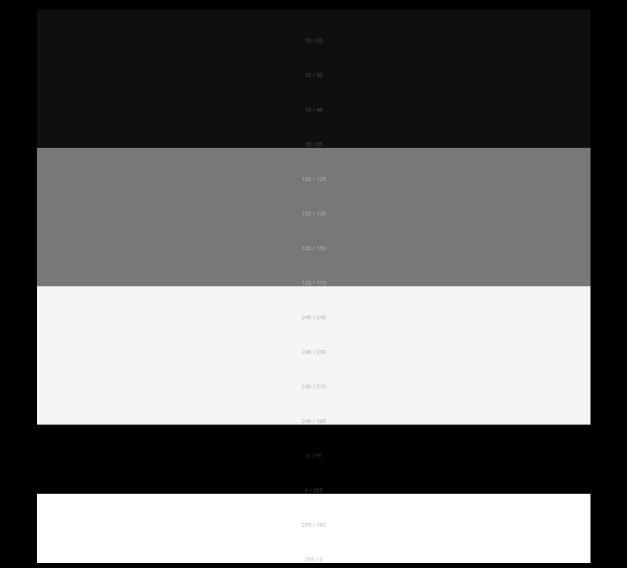
- Detailed QC pattern for physicists and other advanced users
- Same gray levels as sQC, but with more contrasts and frequencies
- Use as follow up to quantitative failures for context



New Patterns – TG270-pQC

- Low contrast patterns at multiple gray levels
- Spatial resolution verification
- Luminance patches for 18point measure
- Continuous ramp

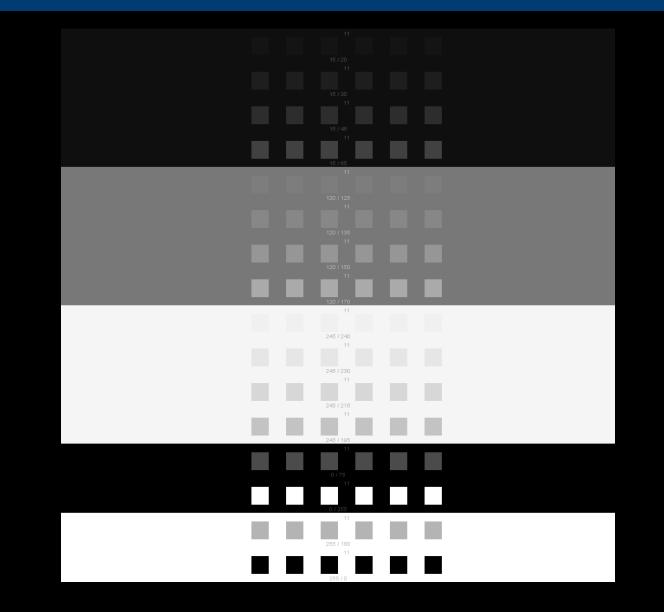
New Patterns – TG270-ULN



- Replaces the TG18 LN and UN pattern series
- Generated for all 256 8-bit gray levels
- Grid for quantitative uniformity measures

TG270-ULN-127

New Patterns – TG270-TR


- Temporal resolution pattern for qualitative evaluation of short-term temporal resolution
- Use to help guide purchasing decisions, display usage, latency effects
- Used with digital camera to capture frames

New Patterns – TG270-TR

New Patterns

- All of the new TG270 test patterns were generated using ImageJ macros (.ijm)
 - Included with TG270 report
 - Available on the TG wiki on AAPM website

Outline

- Display Classifications
 - Diagnostic
 - Non-diagnostic
- Display Test Patterns
 - Existing Patterns
 - New Patterns
- Display Performance Evaluation

Display Performance Evaluation Tools

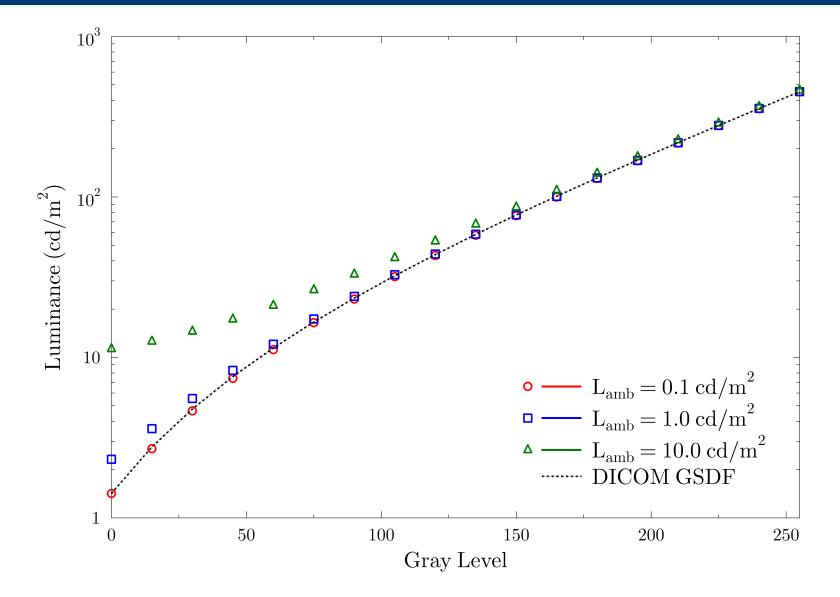
Equipment

- Photometers and colorimeters
 - Contact and telescopic
 - External and internal
- Loupe
- Digital camera

Display Luminance

- Henry Ford HEALTH SYSTEM
- Assessment of display luminance includes measuring:
 - L_{amb}
 - L'_{min} (L_{min} + L_{amb})
 - $L'_{max} (L_{max} + L_{amb})$
 - Luminance ratio (L'_{max} / L'_{min})
 - Luminance response function
- Each of these is related to the others. Understanding these relationships is critical to proper display QA.

- Ambient luminance is due to reflected light from the display
 - Specular reflection
 - Diffuse reflection


amb

 Setting and maintaining proper environmental lighting for consistent and predictable image presentation

- Setting ambient lighting in reading rooms to minimize visual strain
 - 25-50 lux

Display Luminance

Avoid Lamb effects from obscuring darkest regions of image

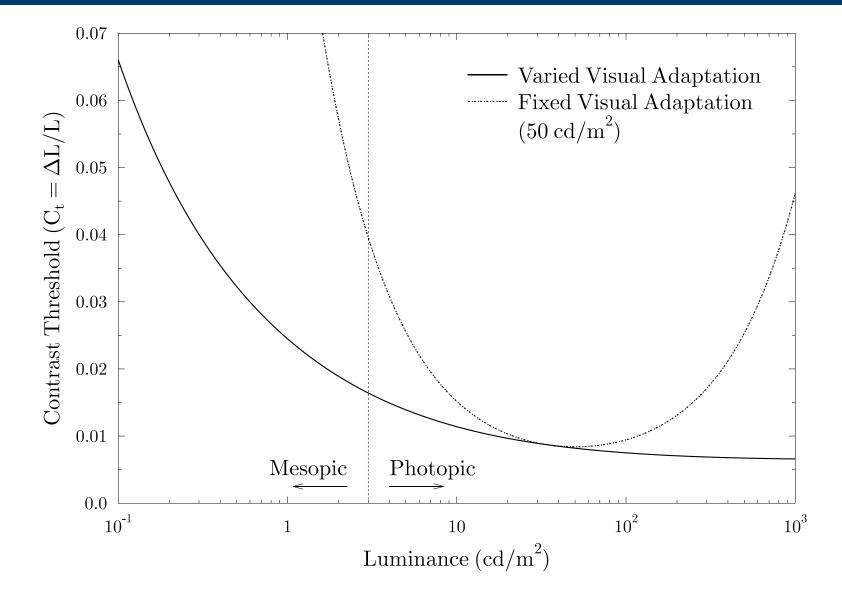
 L_{amb} and L_{min}

$$L_{\min} = 4 \cdot L_{amb}$$

Approximately 80% of contrast seen with no ambient lighting is still visible with ambient lighting

- The minimum and maximum luminances are combined with the ambient luminance
 - L'_{min}, L'_{max}

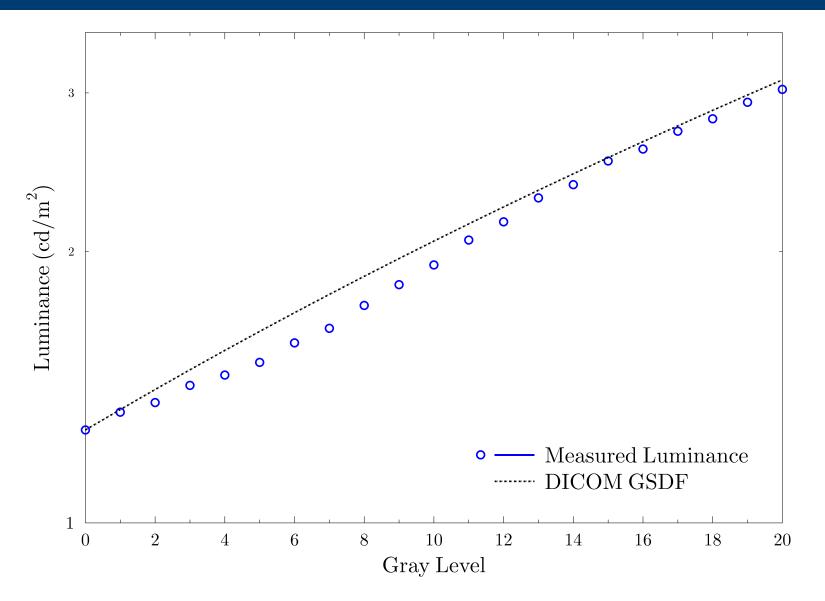
L'_{min}, L'_{max}, LR


The ratio gives the luminance ratio LR

$$LR = \frac{L'_{\min}}{L'_{\max}}$$

- Recommended LR = 350
 - Set L'_{max} based on L'_{min} and LR, not maximum of display

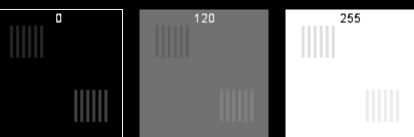
Display Luminance


Luminance Response Function

Henry Ford HEALTH SYSTEM

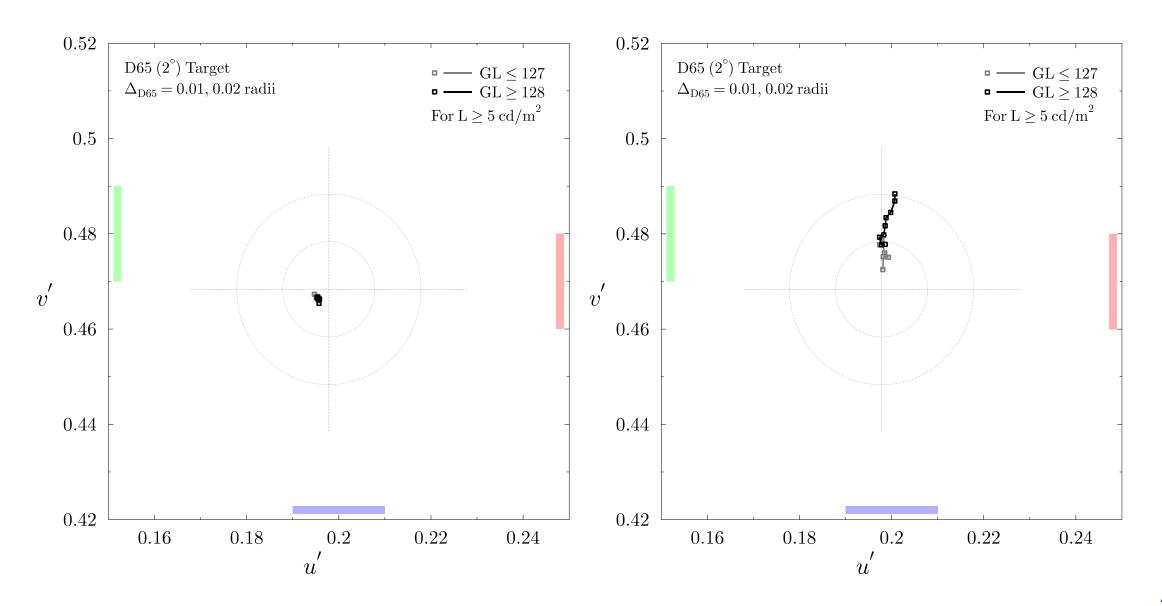
- Measurement of luminance response function
 - 18-point (TG18 methodology)
 - 52-point
 - 256-point
 - 11-point (SMPTE pattern)
- Analysis of luminance should be of L', which includes the effects of ambient luminance

Display Luminance



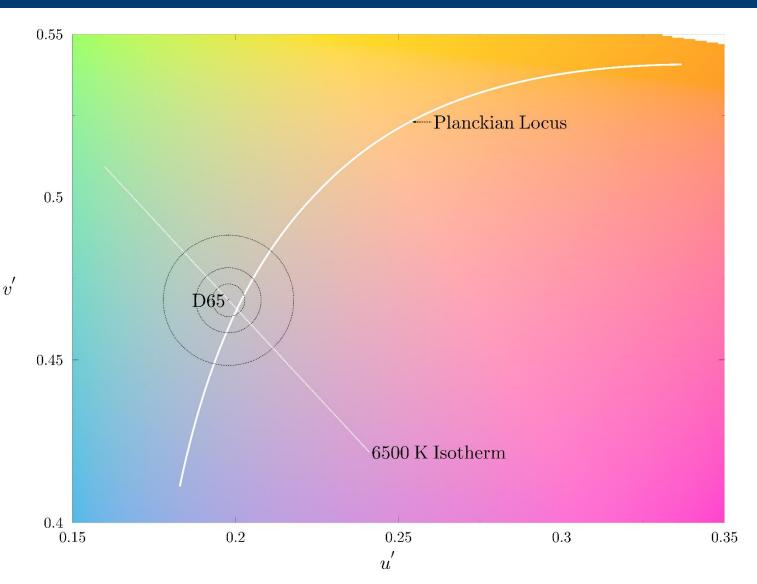
Luminance Response Function

- Confirm conformance with DICOM GSDF
 - Mean JND/GL
 - dL/L per JND
 - Both to within 10% for diagnostic displays, 20% for non-diagnostic
- More frequent qualitative verification
 - Test pattern based
 - TG270-sQC, TG270-pQC, TG18-QC
 - Verify contrast performance at multiples levels (especially in the darks)



- Henry Ford HEALTH SYSTEM
- Color of the light output by the display throughout the grayscale
- Evaluate by measuring the color difference

$$\Delta = \sqrt{\left(u'_{1} - u'_{2}\right)^{2} + \left(v'_{1} - v'_{2}\right)^{2}}$$


- Compared against
 - Other display
 - Standard illuminant (e.g., D65)
 - Full brightness (TG196 methodology)

Henry Ford HEALTH SYSTEM

- Standard illuminant (e.g., D65) should be used instead of correlated color temperature (CCT)
 - CCT is defined as multiple points in color space
 - The maximum difference between the points is large

Comparing two displays

	Optimal Limit	Acceptable Limit
Same Workstation	$\Delta(u',v') \le 0.005$	$\Delta(u',v') \le 0.01$
Same Image Review Chain	$\Delta(u',v') \le 0.01$	$\Delta(u',v') \le 0.02$

Comparing display to standard illuminant

Optimal LimitAcceptable LimitDiagnostic Display $\Delta_{D65}(u',v') \leq 0.005$ $\Delta_{D65}(u',v') \leq 0.01$ Non-diagnostic Display $\Delta_{D65}(u',v') \leq 0.01$ $\Delta_{D65}(u',v') \leq 0.02$

Display Uniformity

- Display uniformity evaluated both quantitatively and qualitatively
 - Quantitative assessment for global uniformity issues across display
 - Qualitative assessment for local non-uniformity
- Global uniformity is less important for clinical image review
 - Global non-uniformity is low frequency, likely not to be confused with anatomy
 - Local non-uniformities are common failures with flat panel displays, and are of similar size/contrast as image features

Display Uniformity

New methodology for evaluating global uniformity

$$LUDM = \max\left(100 \times \frac{\left|L_{n} - L_{med}\right|}{L_{med}}\right)$$

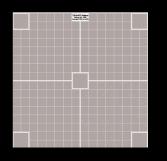
- Evaluates all measured points against the median value
 - Measure 9 points (corners, edges, center)
 - Median less affected by outliers
 - LUDM < 30% for passing. At 15%, clinical impact should be evaluated visually</p>

Display Uniformity

Henry Ford HEALTH SYSTEM

- Local non-uniformities
 - Mura
 - Bad pixels (stuck pixels)
 - Image burn-in
- Evaluated qualitatively
 - Must be done on site
 - Use multiple gray levels to evaluate

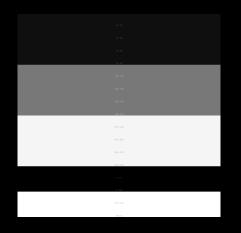
Display Uniformity



Display Noise

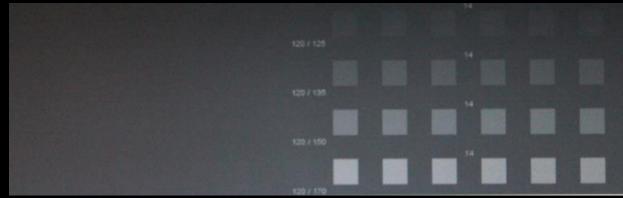
- Qualitative noise assessment for product evaluation
 - Test pattern (e.g., TG18-AFC) for pixel-by-pixel variation

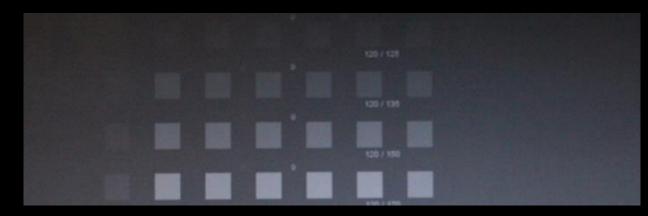
Use clinical images for evaluation of clinical impact



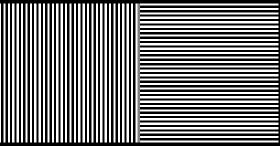
Unnecessary for routine display quality assurance

Display Temporal Performance


- Several scales of temporal performance
 - Long term (luminance stability, uniformity)
 - Medium term (warm up time, image retention)
 - Short term (response time, input latency)
- Qualitative evaluation of short term performance
 - Evaluate impact of display performance on the viewing of dynamic images
 - Fluoroscopy, ultrasound, etc.



Display Temporal Resolution



Display Spatial Resolution

- Modern flat-panel displays have discretized pixel structures, with little light dispersed into neighboring pixels
- Quantitative measures of spatial resolution unnecessary assuming:
 - Advanced pixel structure (e.g., IPS, VA)
 - Digital graphic interfaces (e.g., DVI-D, DisplayPort)
- Visual verification of driver settings to native display resolution
 - Magnifier, loupe is helpful

	-							
			-					
							-	

Display Spatial Resolution

- Pixel pitch selected depending on use and viewing distance
 - Minimize the appearance of pixel structure
 - Radiologist workstation recommended distance of 65 cm
 - Minimize eye strain
 - Other workstations often have larger viewing distance
 - Larger pixel pitch is acceptable

		Modality, Other Clinical Workstation
Pixel Pitch	< 210 µm	< 250 μm

Conclusion

- Display QA for flat-panel displays is an important part of general QA across all of medical imaging
- Awareness of current standards and guidelines is critical for appropriate QA

Status of Report

- Report draft circulating for comments
- Goal is final draft before RSNA 2017
- Intention is to incorporate report into other TG reports
 - No need to re-state display testing in every modality testing guideline
 - Replace references to TG18 in future reports

Thank you