MRI Guided Adaptive Radiotherapy Present and Future

Minsong Cao, PhD

Department of Radiation Oncology

University of California, Los Angeles (UCLA)

April 7th, 2018

Disclosure

 Personal fees (speaking honorarium) from Viewray, Inc. outside this work

Outline

- Introduction to MRI guided radiotherapy (MRgRT)
- Rationale for adaptive radiotherapy
- Clinical workflow of MR guided adaptive radiotherapy
- Challenges in MR guided adaptive planning
- Future development

Advantages of MRI guided RT (MRgRT)

Challenges for MRgRT

- MR safety
- Patient immobilization with MR coils
- Geometric distortion
- Lack of electron density info for dose calculation
- Magnetic field interference on dose distribution

Raaijmakers et al. PMB. 53 (2008)

Elekta MRI-Linac UnityTM (1.5T)

ViewRay MRIdian (0.35T)

The Australian MRI-Linac program (1.0T)

MagentTx Aurora-RTTM (0.5T)

MRgRT system	Radiation	Ma Configuration	agnet field Orientation	Strength
ViewRay MRIdian Cobalt	Cobalt-60	split superconducting close bore	Perpendicular	0.35 T
ViewRay MRIdian Linac	6 MV	split superconducting close bore	Perpendicular	0.35 T
MagnetTx Aurora RT	6 MV	superconducting rotating open bore	Parallel	0.5 T
Australian MRI- Linac	6 MV	superconducting open bore	Parallel/ Perpendicular	1.0 T
Elekta Unity	7 MV	superconducting close bore	Perpendicular	1.5 T

Introduction to ViewRay MRIdian® system

RT components:

- Cobalt system: 3 cobalt heads , 500cGy/min, 3 independent MLC system (1cm leaf width, double focus, field size 27.3cm x 27.3cm)
- MR-Linac: 6MV Flattening Filter Free Linac, 600cGy/min, 0.4cm leaf width double focus double stack MLC

MRI components:

- Split superconductor MRI (0.345 T)
- 50cm FOV with 70cm bore size
- High resolution 3D MRI images in 17-172s
- Real time cine MRI image (4 frames/s for one sagittal plane)

Phys. Med. Biol. 42 (1997) 123-132. Printed in the UK

PII: S0031-9155(97)67292-9

Adaptive radiation therapy

Di Yan[†], Frank Vicini, John Wong and Alvaro Martinez Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI 48073, USA

Received 11 August 1995, in final form 29 August 1996

- Adaptive radiation therapy (ART) is a close-loop process:
 - Systematic monitoring of treatment variations (e.g. IGRT)
 - Re-optimize the treatment plan to account for these variations

Intra-treatment variations

- Tumor anatomic changes (Systematic)

 Regression/Progression
 Weight loss (Systematic)

 Positioning and posture

 Organ at risk
 Morphological (volume, shape etc.)
 Position change in relative to target

 Respiratory motion

 Tumor and/or OAR biological changes (Systematic)
- Does the change lead to clinically unacceptable deviation of dose?
- How to account for it?

Online Adaptive Radiotherapy (On-ART)

- To account for stochastic changes of critical organs
- Potential advantages:
 - Dose escalation
 - Improve treatment tolerance
- Mandates on-board imaging guidance
- Heavily relies on image quality
- Efficient treatment planning tool is essential

Online MR guided adaptive treatment workflow

Imaging and Contouring

- MR imaging:
 - TRUFI (true fast imaging with steady-state free precession) sequence
 - Abdomen: FOV 45x45x24cm, spatial resolution 0.15x0.3cm, acquisition time: 17s with breath hold
 - Pelvic: FOV 50x45x43cm, spatial resolution 0.15x0.15cm, acquisition time 172s with free breathing
- Contouring
 - Deformable image registration between daily MRI and the initial planning MRI
 - Initial planning contours deformed to the daily MRI
 - Reviewed and manually corrected by physician and physicist

Dose prediction and re-optimization

- Initial treatment planning is re-calculated to ascertain whether treatment plan is optimal for that day's specific anatomy
 - Dosimetric metrics extracted automatically for evaluation
 - DVHs and dose distribution compared with the initial plan
- If adaptive planning deemed necessary:
 - Re-optimization using initial planning beam angles and optimization parameters
 - Optimization parameters can be adjusted if necessary

Predict dose

Plan Quality Assurance

• Online adaptive QA tools:

- Secondary Monte Carlo dose calculation
 - DVHs, Dosimetric metric parameters
 - 3D Gamma analysis
- Sanity check:

50 45

40

35

30

25

20

15

19

1.8

1.7

1.6

1.5 1.4

1.3

1.2

- Structure volumes
- Beam bixel-time

Cai et al. Z Med Phys 2017

Adaptive = 169 min total Bixel mins Initial = 199 min total Bixel mins Ratio (Adpative:Initial) = 0.887

Contour Name = Adaptive Contour Volume (Initial Contour Volume) [Ratio]; Skin = 15687.72 (19571.35) cc [0.80]

BKIII	= 15687.72 (15571.55) CC [0.80]
GatingTarget	= 4.25 (4.18) cc [1.02]
O_Stomach	= 216.53 (726.59) cc [0.30]
0_Hrt	= 535.37 (450.33) cc [1.19]
0_Livr	= 1267.22 (1374.42) cc [0.92]
G_per_pancreatic	= 9.64 (11.18) cc [0.86]
0_spleen	= 81.43 (123.70) cc [0.66]
O_Kdny_Rt	= 148.54 (148.59) cc [1.00]
O_Kdny_Lt	= 205.70 (179.91) cc [1.14]
O_Bwel	= 271.40 (1845.24) cc [0.15]
O_Panc	= 3.01 (19.44) cc [0.15]
0_Cord	= 56.29 (73.70) cc [0.76]
P peri panreatic 40	= 26.14 (30.58) cc [0.85]
0 Esgs	= 7.08 (12.23) cc [0.58]
AVOID	= 2.52 (2.85) cc [0.88]

15

Motion management – Soft tissue based gating

Gating based on breath hold

Before coaching

With coaching

Early Clinical Data: Efficacy and Toxicity of MRgRT for Pancreas Cancer

Challenges for online adaptive planning

- Image quality:
 - Tumor conspicuity and soft tissue contrast
 - Image artifacts (motion)
- Plan quality:
 - Contour quality
 - Electron density accuracy
 - Re-planning/optimization
 - Plan QA/QC
- Other factors:
 - Time and process management
 - Decision making
 - Staff coordination and training

Image quality

• Sub-optimal soft tissue contrast with TrueFISP sequence

• MRI is prone to motion artifacts due to volumetric acquisition with slow K space sampling

Accelerated 3D Balanced SSFP imaging

 Variable-density Poisson-Disk (VDPD) technique with 15x undersampling (12.5s)

Courtesy of Dr. Yingli Yang

Quality and Efficiency of Contouring

- Heavily replies on deformable image registration
- Usually requires labor-intensive manual correction

Automated contour segmentation

- Advanced auto-segmentation approaches:
 - Statistical shape model
 - Statistical appearance model
 - Machine learning based model
 - Biomechanical model
 - Rigidity of bones
 - Elasticity of organs
 - Boundary conditions between tissues

Time for adaptive re-contour

Biomechanics Of Bodies: bob-biomechanics.com

Sharp et al. Medical Physics, Vol. 41, No. 5, 2014

Re-planning/optimization

- With limited time, how to achieve the best possible plan dosimetry?
 - Quality of the initial plan is important
 - Improvement of optimization algorithm
 - Beam angle optimization
 - Knowledge based planning

Original plan

1st adaptive plan

2nd adaptive plan

Planning algorithms doesn't know to avoid the kidney if minimal priority is not given – human judgement crucial

Process management and improvement

- Compressing many days of work in one setting with patient on table
- Median time of the adaptive process is about 24 minutes
- Room for improvement
 - Improve image acquisition speed and quality
 - Contouring accuracy and efficiency
 - Re-planning and QA efficiency
 - Staff training, coordination and communication

Automation to maximize efficiency, quality and safety

Minimizing errors through application of risk analysis

Functional imaging as biomarker

- Tumor exhibits complex and heterogeneous microenvironment
- Biological changes may occur before detectable morphological changes
- Functional MRI imaging as a biomarker to assess radiation treatment response:

Biological Processes	Modalities
Metabolism	1H -13C- MR Spectroscopic imaging (MRSI)
Hypoxia	Blood Oxygenation Level-Dependent (BOLD) MRI
Proliferation/Apoptosis	Diffusion Weighted MRI
Angiogenesis	Dynamic Contrast Enhanced (DEC) MRI

Diffusion weighted MRI (DWI)

- A technique to measure the movement of water molecules at cellular level through MR gradients
- Water perfusion and diffusion are influenced by tissue cellularity, tissue organization and extracellular space tortuosity and cell membrane function etc.
- Non-invasive and quantitative
- Dose not require any exogenous contrast agent
- Biomarker to assess treatment response

Thoeny et al. J Magn Reson Imaging. 2010 32(1): 2–16.

Sequence for DWI

- Standard diagnostic sequence: single-shot echo-planarimaging (ssEPI)
 - + Rapid acquisition
 - + Less susceptible to ghosting
- Low SNR
- Low spatial resolution
- Severe geometric distortion

Gao et al. Medical Physics, 44 (10), 2017

Turbo spin echo (TSE) based DWI sequence

David Geffen School of Medicine

0.200

GAO et al. Medical Physics, 44 (10), 2017

1.8

1.6

Longitudinal diffusion MRI for treatment response assessment: Preliminary experience using an MRI-guided tri-cobalt 60 radiotherapy system Yingli Yang, Minsong Cao, Ke Sheng, Yu Gao, Allen Chen, Mitch Kamrava, Percy Lee, Nzhde Agazaryan, James Lamb, David Thomas, Daniel Low, and Peng Hu

Summary

- MRIgRT has tremendous potential in personalized precision-guided radiotherapy
- MRI-guided adaptive radiotherapy may become a new RT paradigm that allows us to offer high quality and personalized patient care
- Opportunities for improvement include high quality and fidelity imaging, better motion management and efficient adaptive workflow as well as biological and functional based adaption

