

TG 210: Emp

TG-210

TG 210 was submitted for final on December 2017

voe Testing Process- The TG210 Pr

- The material on this presentation is a contribution from all the TG 210 member.
- · No conflict of interest to disclose.

Outline

Overview of the Acceptance Testing Process (ATP)

nce Testing Process- The TG210 Per

- TG 210 Survey Discussion
- Topics on TG 210

TG 210: Empowering the Physicist in the Aco

- Future of Acceptance Testing
- TG 210 Recommendations

UCSF

UCSF

Considerations for Technical Aspects of the Purchase Contract (Pre-Planning)

- Important to have vendor required infrastructure specifications for the linac and the vault
- Have sufficient clearance i.e. floor, walls height
 Plan for an in-house computer network
- Plan for an in-house of
- Clean power source
- Chilled water cooling loop
- Appropriate shielding
- Consider vault design for extended source to surface distance (SSD) technique
- Any imaging device on ceiling or floor mounts
- Special lighting for optical surface tracking

21 TG 210: Empowering the Physicist in the Acceptance Testing Process- The TG210 Perspective

UCSF

Considerations for Technical Aspects of the Purchase Contract (Pre-Planning) Planned linac technologies and integration

- Important to clarify with the vendor which techniques will be used for treatment and how will the integration will take place.
 IMRT, IGRT, SRS/SBRT, gating treatments and the use of Flattening Filter Free (FFF)
- Ensure that the vendor knows before hand about any linac that will be beam matched to an existing one
- Both linacs should be similar or compatible to the reference linac model being matched.

22 TG 210: Empowering the Physicist in the Acceptance Testing Process- The TG210 Perspective

Considerations for Technical Aspects of the Considerations for Technical Aspects of the Purchase Contract (Pre-Planning) Purchase Contract (Pre-Planning) Clarification of ATP criteria Warranty and Outside contractor · Possible to negotiate Warranty · Acceptance test and associated tolerances General items Specific components Tighter acceptance criteria Service contract · For stereotactic linacs might want to ask tighter mechanical tolerances All licenses required tighter isocenter coincidence Outside Contractor · Physicist should request ATP documentation with the list of tolerances Understand the consulting group process before hand. Ensure that the contractor will provide A detailed report with the full acceptance testing procedures Results of the final ATP Additional data collected 23 TG 210: Empowering the Physicist in the Acceptance Testing Process- The TG210 Perspective UCSF 24 TG 210: Empowering the Physicist in the Acceptance Testing Process- The TG210 Perspective UCSF

UCSF

General Acceptance Items and Steps Safety and Radiation Safety Test

- Audio-Visual equipment functioning
- Safety interlocks Test functionality of door interlock, Timer, "Beam off" button, Radiation "emergency off" button, "Power off" button and any other safety interlocks
- Beam termination test based on timer or monitor unit (MU) delivered in all modes (clinical, service)
- · Warning lights and sound indications
- Anti-collision system performance for treatment couch, linac's head and imaging components
- Preliminary radiation shielding survey using the "worst case" scenario on all photon energies
- Head leakage test using films wrapped around the gantry head

29 TG 210: Empowering the Physicist in the Acceptance Testing Process- The TG210 Perspective

- Collimator transmission
- Simulate a power failure while treatment beam is on and verify continuation of treatment when power comes back on
 - Taken from TG 210

General Acceptance Items and Steps Mechanical Tests

- Alignment of mechanical isocenter with axis of rotation of gantry, collimator, couch, and any couch top assembly using a front-pointer tool and another pointed tool that can be attached to the couch
- Repeat mechanical alignment test for all imaging systems using an imaging phantom
 - Coincidence of light with radiation field:
 Test congruence of light field and radiation field using film exposures based on film marks placed at the center and edges of light field or the primary, cardinal rotational angles of gantry, collimator, couch and couch top. Test agreement between light fields with radiation exposure over a range of gantry, collimator, couch rotations and translations.
- Coincidence of light with imaging fields:
 - Test congruence of light field and imaging field based on phantom images on MV and kV
 imaging systems. Agreement between light fields with imaging fields over a range of gantry,
 collimator, couch rotations and translations for all imaging systems
- Radiation isocenter test using starshot for the collimator, gantry, and treatment couch
- 30 TG 210: Empowering the Physicist In the Acceptance Testing Process- The TG210 Perspective

Taken from TG 210

DIN 6847-5	in house documents as above	Vendor documents: 40.09 %	
MPPG2a for imaging	in-house documents	• TG 142- 28.87	
AAPM puplications	IAEA review of RO physics	Training documents : 10.419	
iec 976, 977, tg 50	TG 45		
Swiss docs	TG-40		
early truebeam publications	BJR		
Dutch NCS recommendations	TG40		
state regs	Canadian CPQR documents		
Institutional procedure	TG40		
Many older AAPM Reports, IEC976 and IEC 977	In house comparisons with performance of comparable machines		
	CQPR TQC on linacs		

baument from pointers, millingler gradi paper, spirit level, a mich				
Equipment: From pointers, mitimeter graph paper, spirit level, a mach digital level, radiochromic film, plantom with different thicknesses/hei inner BB marker, solid water blocks, tape measure				
Тем	Tolerance			
Front pointer alignment with lasers	± 2mm		Vendors ATP	
Mechanical isocenter coincidence with collimator, gantry and table axis of rotation	s 1 mm radius		documentation	
Front pointer agreement with ODI at 100 cm SSD	0.5 mm		D IDs and athen	
Cross-hair walkout	s 1 mm radius	•	BJRs and other publications	
Isocenter alignment with imaging systems	s 1 mm			
Jaw symmetry test X and Y position accuracy	<1 mm	•	IEC - IEC/TR 6097	
Light and radiation field coincidence	< 2 mm		IAEA	
Radial crosshair and X-jaw parallelism	< 2.5 mm over 35 cm (<0.41*)		IALA	
Transverse crosshair and Y-jaw parallelism	< 2.5 mm over 35 cm (<0.41*)		TG 25	
Gantry, collimator and table rotation isocenter	<1 mm radius			
Winston Lutz Test	s l mm	•	TG 40	
Radiation and mechanical isocenter coincidence	< 1mm diameter		TG 45	
ODI at isocenter	≤ 2mm			
Gantry, collimator and table angle indicator accuracy	< 0.5°		TG 142	
Collimator field size indicator	< 2mm		TG 101	
Asymmetric jaw position readout	< 1mm	•	IG 101	
Split field test	<1mm		TG 51	
Jaw rotation symmetry test	< 1mm			
Table position accuracy (longitudinal, vertical, lateral and rotation)	< 2 mm/1°			
Table position accuracy: 6DOF pitch and roll	< 0.3*			
Table sag	< 2 mm			
MLC position accuracy	±1.0 mm			
MLC position repeatability	40.5 mm	Tak	en from TG 210	

Imaging ATP (1)

Section purpose:

- Provide guidelines to perform the necessary acceptance tests for the linac imaging systems.
- Provide alternative testing strategies if vendor-provided devices are not available.

Imaging ATP sub sections:

- Safety Verification
- Mechanical, geometric and localization calibrations
- Image quality

Imaging dose and limitations

36 TG 210: Empowering the Physicist in the Acceptance Testing Process- The TG210 Perspective

Taken from TG 210

	Radiation Safety and Signs	
Tes	Equipment	
Room door interlocks	Visual checks	
Imaging beam on lights indicator Imaging beam on indicator sound		
Collision interlock system (KVS) Collision interlock system (KVD)		
Collision interlock system (MVD)		
(These test mig	Mechanical (ht only be applicable to certain linac models)	
Test	Equipment	
KV image detector mechanical position	ning accuracy Ruler	
KV source mechanical positioning accu	arney Rafer	
kV collimator blade- jaw size accuracy	Film or FC-2 phantom	
MV image detector mechanical position	ning accuracy Ruler	
MV full range of travel SSD	Ruler	
	Image Geometry Accuracy	
Test	Equipment	
KV imaging and imaging isocenter colu	ncidence Cabe phanteen with internal marker or IsoCal	
	phantom	
MV imaging and treatment isocenter or	sincidence Cube phantom with internal marker or IsoCal	
	phastom	
kV, MV scaling	Blade calibration tool or FC-2 phantom	
	KV planar image quality	
Test	Edulation	
Low contrast sensitivity	KV Loads plantom	
High contrast resolution	KV Lords phantom	
Spatial resolution	KV Leeds phantom	
		Taken from TG 21

Ph	oton Measurements (all energies)			
Test parameters on match machines	Equipment	SSD	Depth	FS
Absolute Dosimetry	Farmer Chamber	100	10	10
PDD 10x	Farmer Chamber	100	10	10
Output Factors open in water	Waterproof farmer chamber	90	10	5 field sizes
PDD open field	Scanning tank and small volume ion chamber	10		5 field sizes
Inline and Crossline profiles open fields	Scanning tank and small volume ion chamber	90	5, 10 15	5 field sizes
2D Distribution open fields	Diode array or film	100	5, 10, 15	5 field sizes
2D Distribution EDW (3 wedge angles)	Diode array or film	100	15 5,10,15	5 field sizes
Head Scatter Factors	Farmer chamber with buildup cap			Multiple
Electron Measure	ment matching test (all energies a	nd app	icators)	
Absolute Dosimetry		100	d _{ef}	Reference applicators
Output factors	Electron diode	100	$\mathbf{d}_{\mathrm{ref}}$	All applicators
Inline and crossline profiles	Electron diode	100	$\mathbf{d}_{\mathrm{ref}}$	All applicators
- B	IRT/VMAT 2D/3D verification			
IMRT Plans delivered on both machine	2D Dosimetry or 3D Dosimetry			
MLC – Transmission, rounded leaf and Tongue and groove				

Major Component Replaceme	ent Tests /	
Upgrades		
Examples of Major Repair / Replacement Items		
 Waveguide and target 		
Klystron / Magnetron		
Bending magnet		
 Ion chamber 		
Beam tuning		
 MV or kV imaging system 		
 Collimation system (jaws, MLC) 		
Gantry drive system		
· Linac mounting or balancing (impact on isocente	r)	
Couch / patient support		
TG 210: Empowering the Physicist in the Acceptance Testing Process- The TG210 Perspective	Taken from TG 210	UQ

Major Component Replacement Tests / Upgrades Examples of Minor Repair / Replacement Items

- Field light change
- Software update (for example, a maintenance release)
- Software parameter adjustment

41 TG 210: Empowering the Physicist in the Acceptance Testing Process- The TG210 Perspective

- Position readout calibration
- Drive motor or position sensor adjustments
- Imager calibration
- Computer servicing, such as board replacement

Taken from TG 210

Major Component Replacement Tests / Upgrades

- Ask the engineer about which system will they be working on
- Will there be any adjustments or modifications to any system that are not directly involved with the repair / replacement work Will the work change:
- · Beam generation, including beam energy or beam profiles (flatness, symmetry)? Beam collimation, including primary jaw position or motion, MLC position or motion, or collimator position or motion?
 Linac geometry, including isocenter, gantry position or motion?
- Linac imaging systems, including positioning of the imaging source (kV only) or imaging panel, imaging performance, or imager dosimetry calibration? Couch positioning or motion for all degrees of freedom?
- Accessory operation?
- Interfaces to 3rd-party systems?
- Safety features?
- What tests will the service engineer perform following the work
- · What are the manufacturer's recommendations for testing following this work

TG 210: Empowering the Physicist in the Acceptance Testing Process- The TG210 Perspective

Taken from TG 210

Future of Acceptance Testing	Preliminary Recommendations
 Standardization of Linear Accelerators linac configurations will be simplified fewer options for linacs Adoption of Advanced Measurement Devices ion chamber arrays diode arrays diode arrays EPIDs Adoption of Automated Testing Routines EPIDs AQUA, Acumyn, Inc. 	 The physicist should be involved in the negotiation process between the manufacturer and the institution. The physicist should make sure to understand and meet all regulatory requirements by the state early in the process. All linac users should be trained before the linac arrives to the institution. The physicist should be provided the ATP procedure and tolerances by the vendor with enough time before the linac arrives to the institution. The lead physicist for the ATP should be excluded from routine clinical duties when possible to ensure the projected limeline is meet. The physicist should have good communication with the vendor service engineers during and after the ATP procees. The physicist should understand the details involved in the beam-matching process to ensure that the right parameters and data are collected. The physicist should communicate with the vendor service engineers prior to any linac minor or major component replacements in order to understand any work to be performed on the linac and its implications.
43 TG 210: Empowering the Physicial in the Acceptance Testing Process- The TG210 Perspective	TG 210 Empowering the Physicial in the Acceptance Testing Process The TG210 Perspective Taken from TG 210

Taken from TG 210

