Automation in Therapy: The Future is Now ## Automated treatment planning Laurence Court University of Texas MD Anderson Cancer Center Houston TX lecourt@mdanderson.org ## Conflicts of Interest - Funded by NCI UH2 CA202665 - Equipment and technical support provided by: - Varian Medical Systems - Mobius Medical Systems - $\bullet\,$ Other, not related projects funded by NCI, CPRIT, Varian, Elekta | ٠ | MD | Anderson | Cancer | Center, | Houst | |---|----|----------|--------|---------|-------| | | | | | | | - · Laurence Court, PhD - Joy Zhang, PhD algorithms and integration - Rachel McCarroll H&N algorithms Kelly Kisling, MS – GYN, breast algorithms - Jinzhong Yang, PhD atlas segmentation Peter Balter, PhD - radiation physics - Ryan Williamson, MS software tools - Ann Klopp, MD/PhD GYN planning Anuja Jhingram, MD GYN planning - Simona Shaitemman, MD breast David Followill, PhD audits/deployment - James Kanke and dosimetry team Stanford • Beth Beadle, MD/PhD – head/neck - Commercial Partners Varian Medical Systems Mobius Medical Systems ## Primary Global Partners - · Stellenbosch University, Cape Town - Hannah Simonds, MD - Monique Du Toit physics - Chris Trauernicht physics - Vikash Sewram, PhD - University of Cape Town - Hester Berger, PhDDavid Anderson, MD - Jeannette Parkes, MD - · Santo Tomas University, Manila - Michael Mejia, MD - Maureen Bojador, MS (physics) - Teresa Sy Ortin, MD - Global testing sites - University of the Free State William Shaw, PhD - Alicia Sherriff, MD ## Cancer across the world - Low and Middle Income Countries (LMICs) - Population: 5.625 billion (84%) Global Burden of Disease (97%) - 29.4% Communicable diseases 70.6% Non-communicable diseases - 66% of global cancer mortality15% of radiation facilities - Affordable Cancer Techologies (NCI) projects - <u>Phase 1 (UH2):</u> Development Phase 2 years to April 2018 System development at MDACC, initial testing at partner sites Phase 2 (UH3): Validation Phase – 3 years - · Full patient testing ## Motivation for automated planning 1: Staff shortages | Country | Additional num | ber of radiother | apy infrastructu | re and staffing | |--------------|----------------|------------------|------------------|-----------------| | | Treatment | Radiation | Medical | Radiation | | | units | oncologists | physicists | therapy | | | | | | technologists | | Philippines | 140 | 141 | 133 | 382 | | South Africa | 56 | 93 | 82 | 82 | | All LMI | 9169 | 12,147 | 9,915 | 29,140 | Dotto NR, Somiel M, Bodis S. Radiation Therapy infrastructure and Human Resources in Low- and Middle-income Countries: Present Status and Projections for 2020. International Journal of Radiation Oncology*Biology*Physics. 2014;88/31/48-52. - Large deficit in resources including medical physicists and technologists - Staff retention is also a problem (anecdotal) - Many international guidelines suggest that medical physicists need 2+ years residency, typically following graduate school so 4+ years per person. - · Approximately 50% of physicist time is spent doing treatment planning - $\bullet~$ If planning was automated, then the deficit of medical physicists could be reduced to ~5000. ## Motivation 2: 3D planning - All our partner institutions are treating chest walls using standard opposed oblique open fields (i.e. not optimized for the individual patient's geometry) - Automated planning could change this Comparison of the dose distribution for a chest wall treatment with optimized wedges (right) and with open fields (left). The non-optimized plan has a large region of soft tissue receiving 60Gy (6000cGy), compared with 52Gy (5200cGy) in the optimized plan. ## Motivation 3: Consistency - Head and neck (H&N) tumors are typically surrounded by a large number of OARs - CTV delineation a particularly difficult and time consuming task - Several reports of high inter-observer variability - Automating this process: - Reduced contouring time Potentially reduce contouring variability ## Specific goals of the Radiotherapy Planning Assistant (RPA) - Automatically create high quality radiation plans for cancers of the: - Uterine Cervix Breast (intact and chest wall) - Head and neck (nasopharynx, oropharynx, oral cavity, larynx, etc.) - Generate treatment plans that are: - Generated from scratch (including transfer to the local machine) in less than 30 minutes. - Compatible with all treatment units and record-and-verify systems. Internally QA'd in an automated fashion within the system. - Limit need for the radiation oncology physician to: - Delineate the target (location). - · Provide the radiation prescription. - Approve the final plan. - Create a system that can be used by an individual with: - A high school education. - ¼ day of training (online and video) on the RPA itself. (dosimetrists still needed for unusual/complex cases) ## A comment about Treatment Planning Systems - Our experience is based on the Eclipse TPS - Similar automation tasks can be achieved with other TPS and I will try to highlight some of these - Several (TPS agnostic) tools have been deployed into our clinic (Pinnacle and Raystation) Pre-processing Cervix ## Greatest effect for hotter doses - Looking at patients with higher maximum doses - >= 107% of Rx - Reduced maximum dose - Hottest 1cc - Median change: -3.5% - Percent of patients - Equal weights: 44% Optimized weights: 3% ## The Big Test - Retrospective - MDACC patients (n=150) - Radiation Oncologist rates fields as acceptable for treatment or not (pass/fail) Target pass rate is 95% - 2 Radiation Oncologists (MDACC and Stellenbosch U) - Pass rate - 89% of patients(round 1 = 78%) - #1 cause of rejection: superior border - Otherwise, 99% of plans are acceptable Clinical Version Deployed at MD Anderson 24 patients so far ~10 minutes per patient Right Lateral ## Cervical Cancer Beam Aperture Convolutional Neural Networks Local connectivity Provides spatial context Shift invariant Great for Image segmentation VGG-16, U-Net, etc. Image classification AlexNet, VGG, etc. CNNs have become very popular in medical imaging research | Test Set Results Patient # 1 – "Worst" case | | |---|-------| | AP PA | RL | | | | | | | | U-Net Ground Truth | VGG19 | | | | | Cervical cancer 4-field box plans - summary | | |--|--| | Automatic generation of field apertures – used in our clinic Automatic beam-weight optimization Secondary calculations to check quality Currently a complete plan takes ~20 minutes | | | | | Head and neck ## Head and neck treatments - Range of complexities in treatments - VMAT or IMRT - Opposed laterals / off-cord cone-downs - Complex conformal plans - Starting with VMAT (IMRT) - Auto-contouring normal tissue - Auto-contouring low-risk CTV Manual contouring of GTV - RapidPlan (Eclipse) Workflow overview (user's perspective) Radiotherapy treatment plan Physician's Plan Order Normal tissue contouring ## The search for a good contouring algorithm Eight Contouring algorithms options evaluated: - 1. Eclipse Smart Detection (Heuristic) - 2. Eclipse Smart Segmentation (DIR) - a) Single Atlas b) Fused Atlas - - b) MDACC Atlas - In-house multi-atlas technique MACS (DIR) [STAPLE fusion] MDACC Atlas Doriginal Varian Atlas ## Case #3: Normal Tissue Autocontouring # Results – Physician Review ## In-house and commercial solution (RayStation) vs. manual contours | Structures | Co | ommercial solut | tion | | In-house solution | on | |-------------|-----------|-----------------|-----------|-----------|-------------------|-----------| | structures | Dice | MSD (mm) | HD (mm) | Dice | MSD (mm) | HD (mm) | | Brain | 0.99±0.00 | 0.8±0.3 | 16.3±28.3 | 0.99±0.00 | 0.8±0.3 | 16.1±28.5 | | Brainstem | 0.84±0.04 | 1.8±0.5 | 6.1±1.9 | 0.89±0.02 | 1.4±0.3 | 6.0±1.9 | | Spinal Cord | 0.85±0.02 | 1.1±0.2 | 8.6±3.7 | 0.84±0.04 | 1.1±0.2 | 9.1±4.7 | | Parotids | 0.81±0.05 | 2.2±0.6 | 11.8±5.8 | 0.83±0.05 | 2.0±0.5 | 11.9±5.5 | | Mandible | 0.90±0.03 | 0.9±0.2 | 8.0±2.8 | 0.90±0.02 | 0.9±0.1 | 7.9±2.6 | | Cochleae | 0.78±0.05 | 0.7±0.1 | 2.2±0.5 | 0.73±0.06 | 0.8±0.2 | 2.7±0.4 | | Eyes | 0.88±0.04 | 1.1±0.3 | 3.4±0.9 | 0.89±0.03 | 1.0±0.2 | 3.5±0.9 | | Lungs | 0.87±0.11 | 3.8±3.2 | 21.5±13.3 | 0.87±0.12 | 3.8±3.3 | 24.3±12.5 | Data from Jinzhong Yang and Peter Balter (submitted to ASTRO 2018) ## Clinical use of OAR autocontouring Analysis of 228 patients (18 months) Possible use of margins to account for contouring uncertainties | | | Patient populat | 10n | | |---------------|------|-----------------|------|-------| | | | 90% | 9 | 5% | | | | Contour covera | ige | | | Structure | 95% | 100% | 95% | 100% | | Brain | 0 | 7.53 | 0 | 10.64 | | Brainstem | 3.55 | 7.22 | 4.51 | 8.88 | | Cochlea | 2.28 | 3.02 | 3.42 | 4 | | Eye | 1.64 | 3.34 | 2.06 | 5.28 | | Lung | 0.64 | >15 | 4.2 | >15 | | Mandible | 1.74 | 12.8 | 3.59 | >15 | | Parotid gland | 4.67 | >15 | 9.05 | >15 | | Spinal cord | 0.98 | 3.74 | 1.63 | 4.81 | ## Dosimetric impact of OAR autocontouring - 54 patients with clinically edited autocontours - Use (1) unedited original and (2) edited contours for planning Evaluate the plan on physician edited "true" structures Target contouring # Results — International Review (5 physicians, n=10) RetroPharyngeal Nodes Nodal Levels II-IV ## Deep learning for contour QA? - Secondary technique - Two channel U-Net architecture (3D variant) - Trained on 210 bilateral oropharynx patients - Requires CT, GTV contour(s), external contour - Tested on 85 independent cases: Dice 0.78±0.05 | Results – Assessment of autocontour quality | | |---|--| | Nesures Assessment of autocontour quanty | | | "Disagreement" with | | | secondary check is
correlated to disagreement | | | with physician CTVs | | | 0 0.5 1 1.5 2 2.5 Hayasteri Disance - Adas and Physician CTVs | | | 0 | Plan optimization Plan automation has been demonstrated to save time: ## Fully Automated Volumetric Modulated Arc Therapy Plan **Generation for Prostate Cancer Patients** Peter W.J. Voet, RTT, Maarten L.P. Dirkx, PhD, Sebastiaan Breedveld, PhD, Abrahim Al-Mamgani, MD, PhD, Luca Incrocci, MD, PhD, and Ben J.M. Heijmen, PhD Department of Radiation Oncology, Erasmus MC-Daniel den Hoed Cancer Center, Rotterdam, The Netherlands Int J Radiation Oncol Biol Phys, Vol. 88, No. 5, pp. 1175-1179, 2014 - Purpose single-run optimization, avoiding manual tweaking - Commercial TPS linked to in-house optimizer for pre-optimization - Demonstrated fully automated VMAT planning for prostate plans - Plans were clinically acceptable and saved 1+ hours of hands on ## Methods – Single optimization treatment plans - · Planning Approach - Physician drawn targets and OARs - · Supplement with autocontoured structures - · Missing normal structures - Various planning structures - Isocenter at target center - Collimator size/angle based on targets 30° and 330° collimator angles, symmetric fields, 18cm max - 90° collimator angle, split field if Superior-Inferior dimension exceeds 18cm - WUSTL Rapid Plan Model + Population Constrain - Normalize such that all PTVs receive ≥98% of prescribed dose to 95% volume Collimator 30° Collimator 330° X field: 18cm X field: 18cm ## Use Eclipse RapidPlan to predict DVHs | ricsuit | s – c | -111111 | cai vs | RPA | piai | 15 | | | | | |-----------------------|------------|----------|----------------|----------|------------|--------|----------------|------------|---------|----------| | | | n valu | e. Wilcoxon | Rank Sum | 1 1 | n valu | e. Wilcoxon I | Rank Sum | % plans | meeting | | Structure | Test Point | All (74) | | | Test Point | | | MDACC (54) | RPA | Clinical | | Spinal Cord | D_max | 0.00 | 0.17 | 0.00 | V_45Gy | 0.63 | 0.25 | 1.00 | 100% | 99% | | Brainstem | D_max | 0.00 | 0.01 | 0.00 | V_50 Gy | 1.00 | 1.00 | 1.00 | 100% | 99% | | Ipsilateral Parotid | D_mean | 0.00 | 0.00 | 0.10 | V_30Gy | 0.00 | 0.00 | 0.00 | 56% | 50% | | Contralateral Parotid | D_mean | 0.02 | 0.00 | 0.00 | V_30Gy | 0.01 | 0.00 | 0.76 | 88% | 86% | | Ipsilateral SMG | D_mean | 0.00 | 0.31 | 0.01 | | | | | 10% | 25% | | Contralateral SMG | D_mean | 0.00 | 0.81 | 0.00 | | | | | 32% | 46% | | Cochleae | D_max | 0.00 | 0.00 | 0.00 | V_35Gy | 0.01 | 0.25 | 0.00 | 86% | 93% | | Optic Chiasm | D_max | 0.02 | 0.75 | 0.03 | V_54Gy | 1.00 | 1.00 | 1.00 | 95% | 100% | | Optic Nerves | D_max | 0.00 | 1.00 | 0.00 | V_54Gy | 0.03 | 1.00 | 0.03 | 90% | 96% | | Lens | D max | 0.00 | 0.13 | 0.00 | V_7Gy | 0.00 | 1.00 | 0.00 | 82% | 88% | | High Dose PTV | V_1cc | 0.00 | 0.22 | 0.00 | | | | | 99% | 100% | | High Dose PTV | V_95% | 1.00 | 1.00 | 1.00 | | | | | 97% | 97% | | Intermediate Dose PTV | V_95% | 0.00 | 0.26 | 0.00 | | | | | 97% | 100% | | Low Dose PTV | V_95% | 0.00 | 0.02 | 0.02 | | | | | 100% | 100% | | | | RI | PA plans are I | oetter | | Clin | ical plans are | better | | | ## Head and neck automated planning summary - Automated contouring of normal tissues deployed into clinic - Automated contouring of targets works (not deployed) - Automated VMAT plans - Currently, the entire automated process takes ~40minutes Breast ## Automated breast planning Purdie: Princess Margaret approach Zhao et al: Support vector machine algorithm to determine beam placement Wire placed around the breast tissue or along chest wall Markers used to denote margins (4) - Heuristic optimization to place beams (based on lung, heart contours) - Originally integrated into Pinnacle. Now available in RayStation Chest wall – works-in-progress - Autocontour chest wall, lung, heart, SCV, humeral head, spinal canal, trachea and cricoid - SVM for gantry, collimator angles, and medial border for SCV field (tangents first, then SCV) - BEV of cricoid and humeral head for rest - Field-in-field apertures/weight optimization Physician feedback | Data gatherir | ig trips, 9/2017, 1/2 | 018, 3/2018 | |---|--|---| | nto Tomas University, Manila | Tygerberg Hostpital, Stellenbosch
University | Groote Schuur Hospital, University of
Cape Town | | Head/neck treatments | Cervical cancer treatments | Cervical cancer treatments | | Reviewed 20 patient RPA
plans with radiation
oncologist | Ran 10 cervical cancer patients
through the RPA and reviewed
with rad onc (~1hour) | Ran 13 cervical cancer patients
through the RPA and reviewed
4 rad onc ~1hour | | They approved all plans | She approved all 10 plans | She approved all 4 plans | | Ran 3 patients through RPA,
and reviewed – approved | Head/neck treatments | Head/neck treatments | | Plans for which V105 > 8%
are flagged to the user | Ran 5 + 3 H/N patients through
the RPA and reviewed with
radiation oncologist She approved all plans | Reviewed 3 patient RPA plans
with radiation oncologist They approved all plans | | A MARIE SOLVE | | | Quality Assurance ## Quality Assurance Basic QA of input data Does the site match? H/N vs. pelvis Is the orientation correct? CT scan length sufficient? Simple image registration Comparison of primary and secondary algorithms algorithms • Dose calculation: Eclipse vs. Mobius • Other independent algorithms for all other functions • Couch removal • Contours • Beam apertures ## **Quality Assurance** - Comparison with population values MU Jaw positions - Data transfer checks (automatic) - Manual plan checks Planning technician Physics Radiation oncology Jaw positions – population statistics | | gantry:
0deg | | | |----------|-----------------|------|---| | | X | у | | | average | 16.8 | 21.3 | Г | | St. dev. | 0.9 | 1.9 | Г | | min | 15.7 | 18.5 | | | max | 18.2 | 23.1 | Г | Total MU – population statistics | average | 208 | |----------|-----| | St. dev. | 9 | | min | 200 | | max | 220 | | | 533333333 | ***** | ******** | >>>> | |--------------------------------|---|---|--|--| | | Populate Vide
D1 124
D2 11-3
D2 11-3
D3 11-3
D4 11-3
D4 11-3
D4 40
D5 40
D5 40
D6 45
D6 45
D6 45
D7 46
D7 46
D7 46
D7 46
D8 45
D8 5 | 60, 180, 210
6, 96, 180, 270
8
9
NA,
SIA | Provident Value
C1.13-4
C0.11-3
C1.13-4
C0.11-3
C0.13-7
C0.10-7
C0.10-7
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.40-9
C1.4 | 65, 185
8, 96, 186, 276
8 | | | Fin Value
13
4.9
30.2
5.7
61.1
34
38.9
38.3
6.21 | 183
10
8
0
NA
30A | Fin Tibe
63
76
162
87
816
56
287
621 | 16X
276
8
0 | | FMILT: | Federal LT
Federal
S2 (mi)
S2 (mi)
S2 (mi)
S2 (mi)
S5D (mi)
S6D (mi)
S6D (mi)
S6D (mi)
S6D (mi)
S6D (mi)
S6D (mi) | Dangy
Gusty-Augie
Coll: Augie
Couch Augie
Weige Augia
Weige Owen | Field RT Fremete 22 (mil) 22 (mil) 23 (mil) 27 (mil) 27 (mil) 28 38 (mil) 38 (mil) 38 (mil) | Davigs
Gratey Angle
Coll. Angle
Couch Engle | | | 5>>>>>> | ***** | היייייי | *** | | he within population | Process Volse
C1.114
C1.114
C1.112
C1.112
C1.112
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112)
(C1.112) | 6E, 16E, 216
6, 36, 14E, 216
6
5
3A
3A | Population Video
(2.1, 12.4)
(2.0, 11.2)
(2.0, 11.2)
(2.0, 11.2)
(3.0, 10.1)
(3.0, 40.0)
(3.1, 40.0)
(3.1, 40.0)
(3.1, 40.0)
(3.1, 40.0) | 6C, USS
10, MI, 180, 370
0 | | reach field should | Fine Value 1.4 4.8 10.2 9.7 80.4 47 11.6 11.7 0.21 | UNIX
0
0
0
NA
NA | Fire Value 4.3
7.4
10.2
10.2
10.7
10.4
47
10.6
10.0
0.20 | 1000
1000
0 | | All parameters for
Field AP | To beauty The Topolo Th | Energy
Gustry Angle
Colf. Angle
Creets Angle
Wedge Angle
Wedge Onest | Field PA
Propries
XI had
XI had
YI had
YI had
YI had
HID (no)
ME
Dupth (no)
SE Dupth (no)
See Wegte | Emegy
Unitty Angle
Cell: Angle
Creek Angle | ## Initial technical review - Double check of vital plan check functions - Only get to this point if passes all internal QA checks - Technical items checked: - Marked isocenter - Patient orientation, laterality and site - Body contour - CT processing (couch removal) - Field apertures Library examples - Any significant artifacts or differences - Dose calculation complete - Purpose designed document to lead the user through the checks. Marked isocenter Checklist Uves UNo: Are all 3 fiducials visible on at least one of the slices shown? Uves UNo: Do the central axis lines touch each fiducial on at least one slice? Patient results # Patient results Checklist U'es □No: On the CT slices, is the body correctly contoured (e.g. not including the couch)? U'es □No: Is the body contour smooth, like the library case? U'es □No: Is the orientation consistent with the library case? ## Field apertures Patient Agenture Checklist | Yes | No : Is the patient orientation and body part consistent with the reference case | Yes | No : Are the blocks/MLCs in the acceptable region? | Yes | No : Are there any significant differences between the patient and library images? | Completeness of dose calculation | | |--|----| | BEY+48,8*45% Gy Inodose Ourline Ford AF Ford AF Ford LT | | | | | | | | | | | | Check Lise UNC(DN) is the 69% isotions outline within 2:m of the field appearant. | | | Library Case | | | | | | | 74 | How well can the planning technologist evaluate plans? - Total 7 pages, 23 questions - Training video (for technical plan checks) - 4 physics undergraduates, 16 patient plans with intentional errors - Time taken to check each plan: Average 8 min ? | | Correctly identified errors | |---|-----------------------------| | Marked isocenter | Yes | | Body contour | Yes | | Field apertures | NO | | Differences in images (including orientation) | Yes | | Unanticipated error type (missing field) | NO | Court et al. Radiation Planning Assistant – A streamlined, fully automated radiotherapy treatment planning system, Jove 2018 (accepted) ## Automation of treatment planning: Summary - Automatic treatment planning may help reduce the planning burden, reducing staff shortages - Fully automated cervical cancer 4-field box treatments done (20min per plan) - Field aperture task already at MDA - Fully automated H/N IMRT/VMAT treatment planning mostly done (40min per plan) Normal tissue contouring task deployed at MDA - Breast / chest wall next - Start deploying (if funded) late 2018. lecourt@mdanderson.org