The History, Current Practice, and Future of Breast Imaging Dosimetry

Andrew M. Hernandez, PhD
Department of Radiology, University of California Davis Health

AAPM 2018 Spring Clinical Meeting
Las Vegas, NV
April 9, 2018
Outline

• Why do we need breast dosimetry?
• Historical development of breast dosimetry
• Current dosimetry methodologies
• Limitations
• Future directions
Mammography Utilization
among women 40 years and older in U.S.

39.3 million annual mammography procedures reported
(as of April 1, 2018)

https://www.cdc.gov/nchs/hus/contents2015.htm#070
https://www.fda.gov/radiation-emittingproducts/mammographyqualitystandardsactandprogram/facilityscorecard/ucm113858.htm
Why do we need dosimetry?

• Quality control

• Protocol optimization

• Evaluate risk to the patient (benefit / risk ratio)
Outline

• Why do we need breast dosimetry?

• Historical development of breast dosimetry

• Current dosimetry methodologies

• Limitations

• Future directions
Historical development of breast dosimetry

- Entrance surface dose (ESD)
 - Dose decreases exponentially with breast thickness

Poor measure of breast dose!
Historical development of breast dosimetry

- Mid-breast dose
- Total energy imparted
Mean *Glandular Dose* (MGD)
(Karlsson *et al.* 1976)

- Glandular tissue at highest risk of carcinogenesis
- Recommended by ICRP in 1987
MGD cannot be measured directly

- Normalized glandular dose (DgN) relates a measurable quantity (entrance surface kerma) to MGD

$$DgN = \frac{MGD}{ESK}$$
Simple breast model
(Hammerstein et al. 1979)

1. 5 mm skin thickness
2. 50% glandular / 50% adipose
3. Homogeneous composition of adipose & glandular tissue
Outline

• Why do we need breast dosimetry?
• Historical development of dosimetry
• Current dosimetry methodologies
• Limitations
• Future directions
Factors affecting dose

• Breast composition / thickness

• Target / filter, kV, and HVL
Monte Carlo modeling of dose

\[MGD = \frac{E_{\text{glandular}}}{M_{\text{glandular}}} \]
Mean Glandular Dose (MGD)

\[MGD = \frac{E_{\text{glandular}}}{M_{\text{glandular}}} = E_{\text{tissue}} \times G(f_g) \]

\[G(f_g) = \frac{f_g \left(\frac{\mu_{en}}{\rho} \right)_{\text{glandular}}}{f_g \left(\frac{\mu_{en}}{\rho} \right)_{\text{glandular}} + \left(1 - f_g \right) \left(\frac{\mu_{en}}{\rho} \right)_{\text{adipose}}} \]
Entrance Surface Kerma (ESK)

• Relates a measurable quantity (ESK) to a Monte Carlo estimation of glandular dose (MGD)

• DgN look up tables are published for specific x-ray techniques and breast compositions
Previous ACR dosimetry method

Wu’s method

\[MGD = X_{ESE} \times DgN \]

- DgN tables published for Mo/Mo, Mo/Rh, & Rh/Rh spectra (GE & SIEMENS only)
- Interpolated across different breast glandularities / thickness, HVL, and kV
- Required alternative tables for W anode systems

Wu et al. Radiology 1994
Monoenergetic MC simulation of DgN

Monoenergetic MC simulation of DgN

Monoenergetic MC simulation of DgN

\[E = 5 \text{ keV} \]

50% glandularity
6 cm

Monoenergetic MC simulation of DgN

$E = 5\, \text{keV}$

$E = 30\, \text{keV}$

50% glandularity
6 cm

\[
pDgN = \frac{\sum_{E=E_{\text{min}}}^{E_{\text{min}}} \Phi(E) \delta(E) \cdot DgN(E)}{\sum_{E=E_{\text{min}}}^{E_{\text{min}}} \Phi(E) \delta(E)}
\]
2016 ACR dosimetry method

Dance’s Method

\[D = Kgcs = K \times DgN \]

\[D = \text{Average Glandular Dose (mGy)} \]
\[K = \text{Entrance Exposure (mR)} \]
\[g = \text{g-factor for breast simulated with acrylic or BR-12} \]
\[c = \text{c-factor for breasts simulated with acrylic or BR-12} \]
\[s = \text{s-factor for clinically used spectra} \]

Assumes a homogeneous breast model with 5 mm skin layer

\[D = K g c s \]

- **g-factor** - dose conversion factor that assumes 50% glandularity

- **c-factor** - corrects for difference in glandularity

 \[c = 1 \text{ for } 50\% \text{ glandularity} \]

Dependent on glandularity, thickness, and HVL.
50% Glandularity BR-12

- HVL = 0.3 mm Al
- HVL = 0.6 mm Al

Breast Thickness (cm)

<table>
<thead>
<tr>
<th>Thickness (cm)</th>
<th>HVL = 0.3 mm Al</th>
<th>HVL = 0.6 mm Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

c-factor * g-factor * 8.76 mGy/R
\[D = Kgcs \]

Table 6. s-factors for Acrylic and BR-12

<table>
<thead>
<tr>
<th>Target/Filter</th>
<th>s-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo/Mo</td>
<td>1.000</td>
</tr>
<tr>
<td>Mo/Rh</td>
<td>1.017</td>
</tr>
<tr>
<td>Rh/Rh</td>
<td>1.061</td>
</tr>
<tr>
<td>Rh/Al</td>
<td>1.044</td>
</tr>
<tr>
<td>W/Rh</td>
<td>1.042</td>
</tr>
<tr>
<td>W/Al</td>
<td>1.050</td>
</tr>
<tr>
<td>W/Ag</td>
<td>1.072</td>
</tr>
</tbody>
</table>

kV differences accounted for by g-factor dependence on HVL
Example: QC phantom dose

• 4.2 cm of 50% glandularity BR-12
• 32 kV W/Ag spectrum (HVL = 0.4 mm Al & $K = 1$ R)

1) Table 5 in ACR manual: $g \times c = 2.19 \text{ mGy/R}$

2) Table 6 in ACR manual: $s = 1.07$

\[
D = K \ g \ c \ s = 1 \ R \times \frac{2.19 \text{ mGy}}{R} \times 1.07 = 2.34 \text{ mGy}
\]
Example: “Patient” dose

- 6 cm compressed breast with 16% glandularity
- 32 kV W/Ag spectrum (HVL = 0.4 mm Al & K = 1 R)

Table 2. g-factors (mGy/mGy) for breast thicknesses of 2–11 cm and the HVL range 0.30–0.60 mm Al. The g-factors for breast thicknesses of 2–8 cm are taken from Dance (1990).

<table>
<thead>
<tr>
<th>Breast thickness (cm)</th>
<th>0.30</th>
<th>0.35</th>
<th>0.40</th>
<th>0.45</th>
<th>0.50</th>
<th>0.55</th>
<th>0.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.390</td>
<td>0.433</td>
<td>0.473</td>
<td>0.509</td>
<td>0.543</td>
<td>0.573</td>
<td>0.587</td>
</tr>
<tr>
<td>3</td>
<td>0.274</td>
<td>0.309</td>
<td>0.342</td>
<td>0.374</td>
<td>0.406</td>
<td>0.437</td>
<td>0.466</td>
</tr>
<tr>
<td>4</td>
<td>0.207</td>
<td>0.235</td>
<td>0.261</td>
<td>0.289</td>
<td>0.318</td>
<td>0.346</td>
<td>0.374</td>
</tr>
<tr>
<td>4.5</td>
<td>0.183</td>
<td>0.208</td>
<td>0.232</td>
<td>0.258</td>
<td>0.285</td>
<td>0.311</td>
<td>0.339</td>
</tr>
<tr>
<td>5</td>
<td>0.164</td>
<td>0.187</td>
<td>0.209</td>
<td>0.232</td>
<td>0.258</td>
<td>0.287</td>
<td>0.310</td>
</tr>
<tr>
<td>6</td>
<td>0.135</td>
<td>0.154</td>
<td>0.172</td>
<td>0.192</td>
<td>0.214</td>
<td>0.236</td>
<td>0.261</td>
</tr>
</tbody>
</table>

Example: “Patient” dose

• 6 cm compressed breast with 16% glandularity
• 32 kV W/Ag spectrum (HVL = 0.4 mm Al & $K = 1$ R)

<table>
<thead>
<tr>
<th>HVL (mm Al)</th>
<th>Thickness (cm)</th>
<th>Breast glandularity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.1%</td>
</tr>
<tr>
<td>0.40</td>
<td>5</td>
<td>1.258</td>
</tr>
<tr>
<td>0.40</td>
<td>6</td>
<td>1.276</td>
</tr>
<tr>
<td>0.40</td>
<td>7</td>
<td>1.292</td>
</tr>
</tbody>
</table>

Example: “Patient” dose

• 6 cm compressed breast with 16% glandularity

• 32 kV W/Ag spectrum (HVL = 0.4 mm Al & K = 1 R)

1) Interpolated from Table 2*: \(g = 0.17 \text{ mGy/mGy} \)

2) Interpolated from Table 6*: \(c = 1.18 \)

3) Table 6 in ACR manual \(s = 1.07 \)

\[
D = K \cdot g \cdot c \cdot s = 1 \text{ R} \times 0.17 \frac{\text{mGy}}{\text{mGy}} \times 1.18 \times 1.07 \times 8.76 \frac{\text{mGy}}{R} = 1.88 \text{ mGy}
\]

Trends in mammography dose

- **50% glandularity**
- **Accreditation Phantom**
- **Screen-film**
- **Digital (Mo target)**
- **Digital (W target)**

Bushberg et al. 2011
Trends in mammography dose

UC Davis Hologic Selenia Dimensions (N = 262)
Tomosynthesis dosimetry

• Not included in ACR manual (appendix in progress)

\[D_g N_{\text{TOMO}} = D_g N_{\text{MAMMO}} \sum_{\alpha_{\text{min}}}^{\alpha_{\text{max}}} \frac{\text{RGD}(\alpha)}{N_\alpha} \]
Tomosynthesis dosimetry

- Not included in ACR manual (appendix in progress)

\[D_{\text{g}N_{\text{TOMO}}} = \frac{D_{\text{g}N_{\text{MAMMO}}}}{N_{\alpha}} \sum_{\alpha_{\text{min}}}^{\alpha_{\text{max}}} \text{RGD}(\alpha) \]

relative glandular dose at \(\alpha \) degrees

total # of projections

Tomosynthesis dosimetry

\[D_g N_{TOMO} = D_g N_{MAMMO} \frac{\sum_{\alpha_{min}}^{\alpha_{max}} R GD(\alpha)}{N_\alpha} \]

- Uses existing DgN tables
- Parameterization of RGD dependence on only breast thickness, size, and \(\alpha \)

Tomosynthesis dosimetry

Tomosynthesis dosimetry

\[DgN_{\text{TOMO}} = DgN_{\text{MAMMO}} \overline{\text{RGD}} \]

RGD can be used for “standard” acquisition:

- constant mAs for all projections & symmetric acquisition angles about 0°
Outline

• Why do we need breast dosimetry?
• Historical development of dosimetry
• Current dosimetry methodologies
• Limitations
• Future directions
Assumptions of current breast models

1. 5 mm skin thickness
2. 50% glandular / 50% adipose
3. Homogeneous composition of adipose & glandular tissue
Assumptions of current breast models

1. 5 mm skin thickness
2. 50% glandular / 50% adipose
3. Homogeneous composition of adipose & glandular tissue
Observation from breast CT images: Skin is not 5 mm thick on the breast.
Skin thickness measurement

Segmentation Algorithm

Measurements

Skin Thickness Results

Mean: ~1.5 mm [0.9 - 2.3]

N = 100 breasts
N = 51 women

Effect of skin thickness on glandular dose

![Diagram showing the effect of skin thickness on glandular dose.](image)

- **Effect:**
 - Relative Dose vs. Depth
 - MGD (Mean Glandular Dose)
 - 1.5 mm skin thickness

- **Explanation:**
 - The diagram illustrates how skin thickness affects the glandular dose at different depths.
 - The curve shows a decrease in glandular dose as depth increases.
 - Marked point at 1.5 mm skin thickness indicating the impact on MGD.
Effect of skin thickness on glandular dose

1.5 mm

3 mm

Relative Dose

Depth

MGD

3 mm
Effect of skin thickness on glandular dose

Relative Dose

Depth

MGD

5 mm

A

B

1.5 mm

3 mm

5 mm

A

B
Effect of skin thickness on glandular dose

~ 20% increase in glandular dose using 1.5 mm skin thickness compared against 5 mm!
Assumptions of current breast models

1. 4-5 mm skin thickness
2. 50% glandular / 50% adipose
3. Homogeneous composition of adipose & glandular tissue
Observation from breast CT:
no 100% glandular breast
Myth of the 50-50 breast

VGF_{SK} = \frac{\text{glandular}}{\text{glandular} + \text{adipose} + \text{skin}}
Myth of the 50-50 breast

- $N = 2831$
- Average $= 19.3\%$
Myth of the 50-50 breast

Median (~16% VGF)

Cumulative Prob.

$VGF_{SK} (%)$

3.5%
Assumptions of current breast models

1. 4-5 mm skin thickness
2. 50% glandular / 50% adipose
3. Homogeneous composition of adipose & glandular tissue
Consequences of glandular heterogeneity on breast dose in mammography

Homogeneous (VGF = 16%)

Heterogeneous (VGF = 16%)
Consequences of glandular heterogeneity on breast dose in mammography

Homogeneous
(VGF = 16%)

Heterogeneous
(VGF = 16%)
Simple breast model overestimates glandular dose

Breast-CT derived glandular distributions

Homogeneous vs. heterogeneous

small ($f_g = 17.0\%$)

medium ($f_g = 12.6\%$)

large ($f_g = 7.0\%$)

Size Dependence

-34% Mo

-23% W
Outline

• Why do we need breast dosimetry?
• Historical development of dosimetry
• Current dosimetry methodologies
• Limitations
• Future directions
• Provide a consensus on techniques necessary for the clinical assessment of MGD in breast imaging modalities including:
 • Digital mammography
 • Breast tomosynthesis
 • Magnification view mammography with partial breast irradiation

• Joint project with ICRU & EFOMP
Addressing the dose overestimation

BCT images acquired at:
Radboud (~80 cases)
UC Davis (~200 cases)

Classification

Image Segmentation:
Caballo M. et al. 2018

Compression

Finite Element Compression

slide courtesy of Sechopoulos et al. & TG 282
New breast dosimetry model

- Heterogenous dense breast model with binary classification of adipose and glandular tissue
- Monte Carlo simulations have to be validated for local dose deposition
MC Validation

Homogenous phantom / monoenergetic beam

- TLD
- MOSFET
- GafChromic™
- Monte Carlo

Fedon et al. Med Phys. 2018
MC Validation

Homogenous phantom / monoenergetic beam

All experimental values in good agreement (< 5%) with Monte Carlo simulations

Fedon et al. Med Phys. 2018
Mammography diagnostic views

• Spot compression and magnification
• Partial breast irradiation

• Should glandular dose include:
 all glandular tissue OR only glandular tissue irradiated?

No clear consensus on the dose metric!
Summary

• Breast dose is impacted by changes in target/filter, kV, and breast thickness/composition

• The homogeneous model overestimates glandular dose by ~30%

• Heterogeneous breast models represent the next generation in dosimetry

• Current efforts are focused on harmonizing international breast dosimetry protocols
Questions?

Acknowledgements:
John M. Boone
J. Anthony Seibert
Ioannis Sechopoulos
Christian Fedon

Funding:
RO1 CA181081
RO1 EB002138