Dual Energy X-Ray Absorptiometry (DXA) – Science, Technology, and Practice

David M. Gauntt, Ph.D. UAB Medical Center

Disclosures

- I am a (minor) GE stockholder
- I was involved in the design of two DXA machines (Expert and Achilles) when working for Lunar Corporation (now GE Lunar)
- My only clinical experience with DXA has been as a patient (no QA experience!)
- I grew up in Bedford MA, 2 miles from Hologic HQ

Effective dose				
Exam	GE Prodigy	Hologic QDR 4500		
Lumbar spine	0.7 uSv	1.8 uSv (?)		
Proximal femur	0.7 uSv	6 uSv		
Whole body	0.6 uSv	4 uSv		
Source: CRCPD Bo	one Densitometry W	hite Paper (2006)		
MEDICINE Knowledge that will change your world				

Uses of DXA machines

- Bone densitometry
 - Diagnosis (accuracy)
 - ◆Therapy response (precision)
 - ◆Fracture prediction (FRAX application)
- Body composition
 - ◆Total bone, total lean, total adipose
- Vertebral morphology

Science Technology Practice

Monoenergetic x-rays
$$LA(E) = \mu_{M,PMMA}(E)\sigma_{PMMA} + \mu_{M,Al}(E)\sigma_{Al}$$

$$\text{Log attenuation } LA(E) = \ln\left(\frac{I_0(E)}{I(E)}\right)$$

$$\text{Mass attenuation } coefficient \\ \mu_{M}, mat(E) \equiv \frac{\mu_{mat}(E)}{\rho_{mat}}$$

$$\text{Areal density (g/cm}^2) \quad \sigma_{mat} \equiv t_{mat}\rho_{mat}$$

$$\text{Lie Medicine}$$

Dual energies

$$LA_{L} = \mu_{M,PMMA}(E_{L})\sigma_{PMMA} + \mu_{M,Al}(E_{L})\sigma_{Al}$$

$$LA_{H} = \mu_{M,PMMA}(E_{H})\sigma_{PMMA} + \mu_{M,Al}(E_{H})\sigma_{Al}$$

$$\sigma_{PMMA} = f_{PMMA}(LA_L, LA_H)$$

$$\sigma_{Al} = f_{Al}(LA_L, LA_H)$$

Dual energies

$$\mu_{M,mat}(E) = a_{PE,mat} \,\mu_{M,PE}(E) + a_{CS,mat} \,\mu_{M,CS}(E)$$

Technologies - History Single Photon Absorptiometry 1963 – Cameron and Sorenson Dual Photon Absorptiometry ~1970, Cameron, Mazess, et al Dual X-Ray Absorptiometry ~1980s (?); Stein, Mazess, et al Source: Thorson and Wahner, JNucMed Vol 14, pp163-171

MEDICINE
Knowledge that will change your world

US Patent Office

DXA Technologies

X-ray source

- K-edge filter (GE)
- kV switching (Hologic)

Beam geometry

- Pencil beam (1st generation)
- Partial fan beam
- Fan beam
- Cone Beam

Photon counting Detectors (GE)

- Na-I / PMT
- CdTe (direct detection)
- LYSO / SSPM

Energy integrating detectors

- Scintillator/photodiode array (Hologic)
- Sandwich detector

Accuracy					
	Parameter	Value			
	Absolute accuracy	+/- 10%			
	Inter-model variation	+/- 15%			
	Inter-unit variation	+/- 2%			
white	ce: International Society for C paper "Precision Assessmen gy X-ray Absorptiomentry				
	Knowledge that will d				

Shewhart Rules

Machine failure if

- Single BMD outside average ± 3 standard deviation
- Two consecutive BMD on same side of average outside avg \pm 2 S.D.
- Four consecutive BMD on same side of average outside avg \pm 1 S.D.
- Ten consecutive BMD on same side of average
- Two consecutive BMD differing by more than 4 S.D.

Sources

Sydney Lou Bonnick, <u>Bone Densitometry in Clinical Practice: Application and Interpretation</u>, Springer, p.115 (2009)

D.Pearson, S.A.Cawte, "Long-term quality control of DXA: A comparison of shewhart rules and cusum charts", Osteoporois International, Vol 7 (4), pp 338-343 (1997)

Knowledge that will change your world

Technologist Precision

Least Significant Change (LSC) 95% confidence interval

 $LSC \equiv 2.77 \sigma_{invivo}$

In-vivo Precision Measurements

- · Measure BMD in 30 patients 2 times, or
- Measure BMD in 15 patients 3 times

Written consent recommended IRB approval not needed

Knowledge that will change your world

В	BMD Precision				
Site	Coefficient of variation	Least significant change			
Lumbar spine	1.0-1.2%	~3%			
Total hip	0.8-1.7%	~3.5%			
Femoral neck	1.1-2.2%	~4.5%			
Trochanter	1.2-1.5%	~3.8%			
	MEDICINE Knowledge that will change your world				

Therapy response				
Parameter	Lumbar spine	Femoral neck		
Baseline	0.850 g/cm ²	0.865 g/cm ²		
2 years later	0.865 g/cm ²	0.858 g/cm ²		
Difference	+0.015 g/cm ²	-0.007 g/cm ²		
LSC for this technologist	0.027 g/cm ²	0.030 g/cm ²		
	LAS MEDICINE Knowledge that will change your world			

Accreditation - ISCD

International Society of Clinical Dosimetry Accreditation Program

- Follow manufacturer's QA recommendations
- Periodic (at least once/week) phantom scans
- In-vivo precision test for every technologist
 - Upon completion of training
 - When a new DXA system is installed
 - · When the technologist's skill level has changed.

Accreditation - CBMD

Canadian Bone Mineral Density Facility Accreditation Program (Ontario Association of Radiologists)

- "Approved" medical physicist
- Weekend long workshop on DXA QA
- · At initial visit
 - Establish "Shewhart" baselines
 - Determine LSC for facility/technologist
 - Measure entrance skin exposure
 - Measure scatter
- Annual review by physicist
- Establish LSC for new staff

Source: Jeff Frimeth, MSc, MCCPM, CIIP

Accreditation - ANZBMS

Australian and New Zealand Bone and Mineral Society

Periodic tests

- Daily phantom accuracy tests
- Long term stability tests

Acceptance tests and after major repair

- Laser light positioning
- Scan line and step spacing
- Scan time indication
- Entrance skin exposure

Other

• Staff scatter exposure measurements

Acknowledgements

Jeff Frimeth

Hologic Inc. and affiliates

GE Healthcare

Society of Nuclear Medicine and Molecular Imaging

UAB Osteoporosis Clinic

