

Use of MRI in Radiotherapy: Technical Consideration

Yanle Hu, PhD Department of Radiation Oncology, Mayo Clinic Arizona 04/07/2018

Conflict of Interest: None

Objectives

- Identify the difference between use of MRI for diagnostic and therapeutic purposes
- Discuss additional requirements in incorporating MRI in radiotherapy and their effects on image quality
- Provide thoughts regarding how to balance, from a technical perspective, among various requirements to serve the needs for therapeutic applications

MRI: Diagnosis vs Treatment

High priorities in diagnostic MRI

- Image quality
- Spatial resolution
- Relatively focused on the disease area (e.g. tumor)

Low priorities in diagnostic MRI

- Spatial integrity
- Reproducible setup
- Normal tissues

MRI: Diagnosis vs Treatment

- High priorities in therapeutic MRI
 - Image quality
 - Spatial integrity
 - Reproducible setup in treatment position
 - Visualization of the target and organs-at-risk (OARs)
- Low priorities in therapeutic MRI
 - Spatial resolution

Requirements specific to therapeutic MRI

- Reproducible setup in treatment position use of immobilization devices
- Spatial integrity distortion mitigation and characterization
- Visualization of the target and OARs use of large field of view (FOV)

All these RT specific requirements negatively impact MRI SNR or image quality

A balance needs to be maintained between image quality, reproducible patient setup, spatial integrity and target and OAR visualization

MRI SNR dependence

 $SNR \propto \Delta x \Delta y \Delta z \sqrt{N_{ave} N_x N_y N_z \Delta t}$

- > Voxel size ($\Delta x \Delta y \Delta z$) \uparrow results in SNR \uparrow
- > Number of Ave (N_{ave}) \uparrow results in SNR \uparrow
- \succ Number of sampling points \uparrow results in SNR \uparrow
- > Bandwidth \uparrow results in $\Delta t \downarrow$ results in SNR \downarrow

MRI SNR dependence

 $SNR \propto B_0$

- > Main magnetic field (B_0) \uparrow results in SNR \uparrow
- $> B_0 \uparrow$ results in geometric distortion \uparrow

MRI SNR dependence

For surface coils and phase-array coils, SNR decreases rapidly as the separation between the coil and anatomy of interest increases

2015 MRI QC manual

Immobilization devices

- An essential component to maintain reproducible patient setup in treatment position
- Increase separation between the RF receiving coil and human anatomy
- Decrease SNR substantially

Immobilization devices

An example of immobilization devices

Immobilization devices

> An example of immobilization devices

Immobilization devices

> An example of immobilization devices

Immobilization devices – mitigation

- Easy to implement but less effective method
 - Increase number of averages Improve SNR at a cost of scan time
- Easy to implement and relatively effective method
 - Reduce receiver bandwidth Improve SNR but may introduce more distortion
 - Increase voxel size Improve SNR at a cost of spatial resolution

Immobilization devices – mitigation

Effective but not so easy to implement method

 Reduce separation between receiving coil and anatomy of interest – Improve SNR but not exactly in treatment position, so additional effort is needed for image registration

Spatial integrity

- Geometric distortion is inherent in MRI images
- Distortion is minor in the center of the bore, but gets larger towards peripheral region
- It depends on hardware performance and imaging protocols
- Acceptable distortion may be specific to individual applications (MR+CT, or MR only)

Causes of geometric distortion

> Hardware imperfection

- Gradient nonlinearity
- Magnetic field inhomogeneity

Causes of geometric distortion

Hardware imperfection

Gradient nonlinearity

 $B = B_0 + G_x \cdot x$

Causes of geometric distortion

Hardware imperfection

• Magnetic field inhomogeneity

 $B = B_0 + G_x \cdot x$

Severity of geometric distortion

- Hardware imperfection
 - Gradient nonlinearity
 - Magnetic field inhomogeneity
- Sensitivity to hardware imperfection
 - MRI sequence
 - Imaging parameters (receiver bandwidth)

Mitigation of geometric distortion

> Hardware performance characterization

- Calibration during installation
- Characterization during commissioning
- Characterization requires use of spatial integrity phantoms and is supposed to be performed using clinical relevant protocols

Mitigation of geometric distortion

Examples of spatial integrity phantoms

Mitigation of geometric distortion

- Hardware imperfection
 - If possible, place anatomy of interest in the central area of the bore
 - Consider the step and shoot method

Mitigation of geometric distortion

- Sensitivity to hardware imperfection
 - MRI sequences (clinical driven, not much flexibility)
 - If available, enable the geometric distortion correction in the protocol
 - Imaging parameters: increasing receiver bandwidth to reduce geometric distortion

Mitigation of geometric distortion

Sensitivity to hardware imperfection

- Imaging parameters: Increasing receiver bandwidth to reduce geometric distortion
- Consequence: SNR decrease
- Remedy: Increasing the number of average (increased scan time), increasing voxel size (reduced spatial resolution)

- > Large field of view (FOV) is required
 - For MRI-only simulation, it is required to include the entire external body
 - For CT+MRI simulation, large FOV is preferred to facilitate image registration and OAR delineation

- Trade-offs for using large FOV
 - Spatial resolution decreases if the acquisition matrix remains the same
 - Potentially larger geometric distortion in the peripheral region

- Mitigation of spatial resolution degradation
 - Good spatial resolution is usually preferred for the delineation purpose
 - Increasing spatial resolution decreases SNR
 - Increasing spatial resolution is often accompanied with increase scan time to either compensate SNR or avoid exceeding gradient system hardware limits

- Mitigation of geometric distortion
 - Geometric distortion can be reduced by using a higher receiver bandwidth
 - Increasing bandwidth decreases SNR

- > Available options to recover SNR
 - Increase the number of average (or acquisition) increased scan time and have more chances for voluntary motion
 - Use of 3D acquisition methods instead of 2D acquisition methods – more susceptible to motion artifacts
 - Reduce spatial resolution
 - Reduce receiver acquisition bandwidth

Use of MRI in radiotherapy

- > An ideal solution may not always exist
- An acceptable solution is usually achievable through a careful balance among image quality, reproducible patient setup, spatial integrity and target and OAR visualization

Acknowledgements

• Judy A Collins, R.T.(R)(MR)

Questions & Discussion

©2015 MFMER | slide-34