M. Pudasaini¹, N. Dumitru¹, M. Shojaei¹, S. Pella¹,²,³, Th. Leventouri¹

INTRODUCTION

Stereotactic Body Radiation Therapy (SBRT) is a treatment modality that delivers high doses to the target volume in few fractions. The improvement in radiation beam shaping and advancement in imaging led to interest in the reduction in number of fractions for the whole treatment. Not only because of the highly conformal delivery to the target, but also the very high dose gradient to spare normal tissue adjacent to the target.

- Multileaf collimators (MLCs) are employed to shape the beam to the target.
- In TrueBeam, the two MLC types available are the high definition (HD) MLC (2.5 mm leaf width) and the normal MLC (5 mm leaf width) for the first 10 cm X 10 cm field size.
- Field size and width of the individual leaves determine the conformity and steepness of the dose gradient.

PURPOSE

- To study the significance of the differences between HD MLC and 5mm MLC in treatment planning.
- To introduce methods to minimize these differences via optimization procedures.

MATERIALS & METHODS

A retrospective study of 25 patients cases who had been treated with SBRT were selected. The plans were chosen from two different cancer centers with TrueBeam (one with HD-MLC and the other with the 5 mm MLC).

New plans were generated by using the type of MLC that was not used in the original plan keeping the same optimization parameters. The plan normalization for the newly generated plans were kept the same with the original plan for comparison.

The data from the cumulative DVH were exported to an excel sheet. Dose and volumes of planning treatment volume (PTV) and critical organs (lungs, esophagus, heart, spinal cord, trachea, and ribs) for the 50 plans were entered in an excel sheet for the analysis.

The homogeneity of the dose distribution, gradient indices and the conformity indices were evaluated for each of the plans.

RESULTS

Conformity Index values decreased, or remained same for HD MLC compared to the Normal for all the plans. The mean decrease value for HD MLC is 2.02% (maximum is 6.79%).

CONCLUSION & FUTURE WORK

- This dosimetric evaluation of the treatment plans indicates that plans with HD MLC have dosimetric merit over the plans with normal 2.5mm MLC. However, the improvement degree is not consistent for all the plans.
- The radiobiological effect factor must be evaluated to conclude the advantages of the HD over the normal MLC.
- Optimization with changing parameters when using normal MLC can give the same dosimetric results as the HD MLC.
- We will evaluate the biological effective dose (BED), the equivalent uniform dose (EUD), the tumor control probability (TCP) for lung lesions, and the normal tissue complication probability (NTCP) for the healthy lung and the surrounding healthy tissues of each plan to compare the radiobiological effects.

ACKNOWLEDGEMENTS

- South Florida Radiation Oncology (SFRO)/21st Century Oncology
- Department of Physics, Florida Atlantic University
- Advanced Radiation Physics Inc.