
[next-next nearest neighbor]
While computing the gradient of the tensor across the 3-dimensional 
field space, sometimes a 0 value will occur in the derivative, resulting 
in a undefined result. As a way of preventing this, the algorithm can 
be implemented such that it only looks at the force contribution 
from the 8 next-next nearest neighbors across the 3-axes: ±x, ±y, and 
±z. This is based of the nearest neighbor algorithm, and 
when extrapolated to 
3 space, becomes the 
“next-next nearest 
neighbor” 
method.  
The magnetic
field varies
adiabatically,
so this can be
done without
detriment to
the final result.
Therefore, the 
force on the 
point under 
evaluation becomes the average of the force contribution from the 
eight  surrounding neighbors.
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[abstract]

By understanding how to manipulate the 
equivalent-force vectors of a magnetic field 
space, we can move towards field shaping 
techniques that apply the force gradient of our 
choosing to a point in space. We can use this with 
targeted drug delivery therapies involving 
superparamagnetic iron oxide nanoparticles 
(SPION) in order to provide a non-invasive 
technique to isolate the drug to target tissues. 

We demonstrate computation of the force 
equivalent vector field by applying a simplified 
Maxwell stress tensor to a 3D magnetic field 
space (setting electric fields to zero). From this 
generalized force equation, we then apply the 
tensor and compute the forward derivative to 
arrive at the equivalent force. To compute the 
gradient, we implement a next-next nearest 
neighbor (NNNN) method to increase 
computational efficiency while performing 
computations in all directions. Data handling 
techniques for large amounts of vector field 
spaces are also explored. The method is 
demonstrated by performed calculations across a 
simulated magnetic field space for uni and multi-
directional fields.

Physically, T describes pressures and shears on a volume of charges 
through the fields on the surface:
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which can be expanded and simplified by assuming E = 0:
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Force is then given as:

𝑭 = ∇ ∙ 𝑻

what is the [Maxwell stress tensor]?

[implementing] the algorithm
Applying the tensor to a collected data sets requires a physical setup 
with a 3 axis gaussmeter measurements taken at a known step size 
between points along each axis. In order to handle this data and 
compute the contribution to force across each axis, several 
techniques are implemented:

[defining a coordinate system]
Absolute positions from the stepper motors are converted into an 
integer-based coordinate system. By converting these experimentally 
defined spatial dimensions to indexed values, the defined 
experimental values are selectable and variable, but the code still 
performs the proper calculations.

[sorting for values]
MATLAB’s built-in linear indexing feature is one way to easily sort 
through matrices and recall values (or coordinates). The dimensions 
have been set to general indices by associating a coordinate set as a 
single index value. When searching for a particular coordinate set, 
linear indexing will then return
a single, integer value, 
describing the location
of the coordinate set
within the general 
matrix. Using this 
method, the tensor can  
be applied to any 
coordinates without
re-sorting the integers.

The single linear index
value can point to both
the location of the coordinates
and their corresponding
magnetic field values. This is 
due to the values being linked via a [cell] structure.

[linking positions with magnitudes]
Utilizing MATLAB’s [cell] structure, the x, y, z coordinates are linked 
with their corresponding Bx, By, Bz magnitudes (analogous to a 
pointer in other programming languages). Consequently, when linear 
indexing is used to return the position of a coordinate, that same 
value points to the corresponding magnitude within the [cell] 
structure.

This allows a single value to point to both the position and magnitude
when searching for coordinates to perform the derivatives across, 
which makes handling the data sets much easier.

results on a [sample space]
For a magnetic field that increases in strength along the same axes in 
increments of the same value, we can plot the magnetic field and the 
resulting equivalent-force vector field:

And for the same field increasing in strength multi-directionally across 
a 5x5x field space:(+1, 0, 0)(-1, 0, 0) (0, 0, 0)

(+1, -1, 0)(-1, -1, 0) (0, -1, 0)

(+1, -2, 0)(-1, -2, 0) (0, -2, 0)

(+1, 0, 1)(-1, 0, 1) (0, 0, 1)

(+1, 0, 2)(-1, 0, 2) (0, 0, 2)

(+1, -1, 1)(-1, -1, 1) (0, -1, 1)

(+1, -2, 1)(-1, -2, 1) (0, -2, 1)

(+1, -1, 2)(-1, -1, 2) (0, -1, 2)

(+1, -2, 2)(-1, -2, 2) (0, -2, 2)

index (P(Bx, By, Bz)) = 993
P(Bx, By, Bz) = (-1, 0, 1)
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