
[next-next nearest neighbor]
While computing the gradient of the tensor across the 3-dimensional
field space, sometimes a 0 value will occur in the derivative, resulting
in a undefined result. As a way of preventing this, the algorithm can
be implemented such that it only looks at the force contribution
from the 8 next-next nearest neighbors across the 3-axes: ±x, ±y, and
±z. This is based of the nearest neighbor algorithm, and
when extrapolated to
3 space, becomes the
“next-next nearest
neighbor”
method.
The magnetic
field varies
adiabatically,
so this can be
done without
detriment to
the final result.
Therefore, the
force on the
point under
evaluation becomes the average of the force contribution from the
eight surrounding neighbors.

Mapping
Magnetic
Forces
[using the Maxwell

stress tensor]
Alisha Shutler, M.S.

Isaac Rutel, Ph.D., DABR

University of Oklahoma Health
Sciences Center

[contact]

Alisha Shutler, M.S.
University of Oklahoma Health Sciences Center
Department of Radiological Sciences
College of Medicine
P.O. Box 26901
Garrison Tower, Suite 4G4250
Oklahoma City, Oklahoma 73126-0901
: ashutler@oushc.edu
: (405) 633-3732
: ouhsc.edu

[abstract]

By understanding how to manipulate the
equivalent-force vectors of a magnetic field
space, we can move towards field shaping
techniques that apply the force gradient of our
choosing to a point in space. We can use this with
targeted drug delivery therapies involving
superparamagnetic iron oxide nanoparticles
(SPION) in order to provide a non-invasive
technique to isolate the drug to target tissues.

We demonstrate computation of the force
equivalent vector field by applying a simplified
Maxwell stress tensor to a 3D magnetic field
space (setting electric fields to zero). From this
generalized force equation, we then apply the
tensor and compute the forward derivative to
arrive at the equivalent force. To compute the
gradient, we implement a next-next nearest
neighbor (NNNN) method to increase
computational efficiency while performing
computations in all directions. Data handling
techniques for large amounts of vector field
spaces are also explored. The method is
demonstrated by performed calculations across a
simulated magnetic field space for uni and multi-
directional fields.

Physically, T describes pressures and shears on a volume of charges
through the fields on the surface:

𝑇𝑖𝑗 = 𝜖0 𝐸𝑖𝐸𝑗 −
1

2
𝛿𝑖𝑗𝐸

2 +
1

𝜇0
𝐵𝑖𝐵𝑗 −

1

2
𝛿𝑖𝑗𝐵

2

which can be expanded and simplified by assuming E = 0:

𝑇𝑥𝑦𝑧 =
1

2𝜇0

𝐵𝑥
2 − 𝐵𝑦

2 − 𝐵𝑧
2 2𝐵𝑥𝐵𝑦 2𝐵𝑥𝐵𝑧

2𝐵𝑦𝐵𝑥 𝐵𝑦
2 − 𝐵𝑧

2 − 𝐵𝑥
2 2𝐵𝑦𝐵𝑧

2𝐵𝑧𝐵𝑥 2𝐵𝑧𝐵𝑦 𝐵𝑧
2 − 𝐵𝑥

2 − 𝐵𝑦
2

Force is then given as:

𝑭 = ∇ ∙ 𝑻

what is the [Maxwell stress tensor]?

[implementing] the algorithm
Applying the tensor to a collected data sets requires a physical setup
with a 3 axis gaussmeter measurements taken at a known step size
between points along each axis. In order to handle this data and
compute the contribution to force across each axis, several
techniques are implemented:

[defining a coordinate system]
Absolute positions from the stepper motors are converted into an
integer-based coordinate system. By converting these experimentally
defined spatial dimensions to indexed values, the defined
experimental values are selectable and variable, but the code still
performs the proper calculations.

[sorting for values]
MATLAB’s built-in linear indexing feature is one way to easily sort
through matrices and recall values (or coordinates). The dimensions
have been set to general indices by associating a coordinate set as a
single index value. When searching for a particular coordinate set,
linear indexing will then return
a single, integer value,
describing the location
of the coordinate set
within the general
matrix. Using this
method, the tensor can
be applied to any
coordinates without
re-sorting the integers.

The single linear index
value can point to both
the location of the coordinates
and their corresponding
magnetic field values. This is
due to the values being linked via a [cell] structure.

[linking positions with magnitudes]
Utilizing MATLAB’s [cell] structure, the x, y, z coordinates are linked
with their corresponding Bx, By, Bz magnitudes (analogous to a
pointer in other programming languages). Consequently, when linear
indexing is used to return the position of a coordinate, that same
value points to the corresponding magnitude within the [cell]
structure.

This allows a single value to point to both the position and magnitude
when searching for coordinates to perform the derivatives across,
which makes handling the data sets much easier.

results on a [sample space]
For a magnetic field that increases in strength along the same axes in
increments of the same value, we can plot the magnetic field and the
resulting equivalent-force vector field:

And for the same field increasing in strength multi-directionally across
a 5x5x field space:(+1, 0, 0)(-1, 0, 0) (0, 0, 0)

(+1, -1, 0)(-1, -1, 0) (0, -1, 0)

(+1, -2, 0)(-1, -2, 0) (0, -2, 0)

(+1, 0, 1)(-1, 0, 1) (0, 0, 1)

(+1, 0, 2)(-1, 0, 2) (0, 0, 2)

(+1, -1, 1)(-1, -1, 1) (0, -1, 1)

(+1, -2, 1)(-1, -2, 1) (0, -2, 1)

(+1, -1, 2)(-1, -1, 2) (0, -1, 2)

(+1, -2, 2)(-1, -2, 2) (0, -2, 2)

index (P(Bx, By, Bz)) = 993
P(Bx, By, Bz) = (-1, 0, 1)

point of evaluation


next-next
nearest

 neighbor

+x

+y

+z

 nearest
neighbor

 next nearest
neighbor

