Linear and logistic regressions: What they try to explain, and how to interpret the results

FLORIDA HOSPITAL The skill to heal. The spirit to care.

Relevant Conflicts of Interest

• Nope, I make no money off of teaching or performing stats

Twitter: @wfsensak E-mail: wfsensak@gmail.com www.teleradphysics.com

Simple Linear Regression

- After this you should be able to:
 - Understand basic terminology
 - Interpret results of a regression analysis Determine if a model is "good"
 - Avoid common pitfalls

Model Terminology

- The measured HU value at any point is the best fit line plus the residual error
 g 100
 g 100
- Our best guess of HU at ⊋ unmeasured concentrations are the values of the best fit line

What does the model mean?

What does "best" mean?

 "Best" minimizes the 250 sum of squared residual 200 errors (SSE)
 Squared since 210 distance can be 50 positive or negative 0

How good is our model?

- Not a simple question several things to look at
- Coefficient of Determination (r² or R²)
 - Essentially answers how much of the variability can be removed by the data
 - Best explained through example
 CNR vs Concentration of Iodine

Coefficient of Determination

 Total Sum of Squares
 How much does the data differ from the

• Variation in the data from all sources

Coefficient of Determination

He la construction de la constru

- Regression Sum of Squares • How much do modelpredicted values differ from the
 - Variation of the model

20	y = 0.3437x
15	R ² = 0.933
10	etc
,10 ,10	
5	
0	
	Concentration of Iodine [mg/mL]

Coefficient of Determination

- How much variation does the model explain?
 - $R^2 = \frac{Model Variation}{Total Data Variation}$
 - 0: accounts for no
 - variation
 - 1: perfect fit

Coefficient of Determination

- What about the other 7%? • Random?
 - Measurement error
 - Other predictor?Wrong model?

Coefficient of Determination

- Linear model • R² = 0.933
- Powermodel
- R² = 0.9953 • Is power model the correct fit?

• ... maybe

• R² just tells you how much variation the model accounts for, nothing more

No Linear Relationship ≠ No Relationship

Hypothesis Testing

- Estimate of $\beta_1 = 0.34$
- Standard Error of β₁ Estimate = 0.013
- Estimate is <u>26x</u> the SE so we get a very small pvalue and "confirm" the linear model
 Does NOT mean a curvilinear model is not better

	Estimate	SE	tStat	pValue
mg_mL	0.34366	0.013239	25.958	1.662e-14

Pitfall

- Statistical significance does not imply clinical significance
- A model may have a significant slope, but explain <1% of variation
 - Probably not a useful model

Lack-of-Fit Test

- If residual error due to the model is large compared to residual error from other sources, then we have a poor model
 - Requires repeated outcome values for the same predictor value (i.e., replicates)

Lack-of-Fit Test

- 2 replicates
- · Lack of fit sum of squares
 - Squared sum of distances between and model at i

Lack-of-Fit Test

- 2 replicates
- Pure sum of squares
 - Squared sum of distances between data values and mean of data values at i

Lack of Fit Test

• For a good model the Lack of Fit Error will be small compared to the Pure Error

- Actually compares Mean Square, not Sum Square

Lack-of-Fit Test

• F-Statistic Test

- H₀: Model is a good fit
- H₁: Model is a <u>poor</u> fit
- F = 2.7 and p-value = 0.002 \rightarrow reject H₀

	SumSq	DF	MeanSq	F	pValue
		_			
Total	3.9275e+06	72	54548		
Model	3.8827e+06	1	3.8827e+06	6154.2	1.01e-70
Residual	44794	71	630.9		
. Lack of fit	20632	17	1213.6	2.7124	0.0027825
. Pure error	24162	54	447.44		

Lack of Fit Test

- Why is it a poor fit?
 - Data was not actually replicates
 - Different recon kernels, some with artificial HU enhancement

- Maybe power law is a better model?

	SumSq	DF	MeanSq	F	pValue
		_			
Total	3.9275e+06	72	54548		
Model	3.8827e+06	1	3.8827e+06	6154.2	1.01e-70
Residual	44794	71	630.9		
. Lack of fit	20632	17	1213.6	2.7124	0.0027825
. Pure error	24162	54	447.44		

When can I use SLR?

• LINE

- Linear
- Errors are:
 - Independent
 - Normal errors
 - Equal variance errors
- ... Or all errors are equal, normal, independent, and have a zero mean value

Residuals vs. Fit Plot

• Ideal: a random, equal sized band about 0

Residuals vs. Fitted Plot

- Structure: Not linear relationship
- Unequal Band: Variance changes with X_i

Pitfall

- The data does <u>NOT</u> have to be normal • Errors should be normal
- Normal data typically has normal errors so it satisfies that part of the criteria for use

How strict are the criteria?

- Equal variance and independence are important
- Prediction intervals are pretty sensitive to normality of errors

Binomial Logistic Regression

- After this you should be able to:
 - Understand basic terminology
 - Interpret results of a regression analysis
 - Determine if a model is "good"
 - Avoid common pitfalls

Terminology

- Binary outcome
 - Code outcome as 0 or 1 (e.g., malignancy)
- Ordinal outcome
 - Code outcome as integer 0, 1, etc.
 - Implies an order (e.g., pain scale)
- Nominal outcome
 - Code outcomes, but no natural ordering
 - E.g., basal cell carcinoma, squamous cell carcinoma, and melanoma

Interpreting W₁

Log Odds: Ln(P/1+P) = W₀ + W₁*X₁
 Log Odds: W₁ = 0.185

• $W_0 + W_i^* X_i$

Rearrange

W₀ = -4.571
W_i = 0.185

 $P = \frac{1}{1+e^{-\alpha}}$ • Ln(P/1+P) = W₀ + W_i*X_i • W_i is increase in log odds

• Clear, right?

- Odds Ratio Exp(W₀) = Exp(0.185) = 1.2
 - For a unit increase in HU StDev, the odds of malignancy go up 1.2x

Coefficients,	Standard	Errors,	Odds Ratios,	and 95% C	Confidence	Limits
Variable	Coeff.	StdErr	p	0.R.	Low	High
1	0.1847	0.0818	0.0240	1.2029	1.0247	1.4120
Intercept	-4.5708	1.9425	0.0186			

HU St Dev is 33 what is the probability?

An Extension of the Model

- We only used one predictor (HU StDev)
- Could extend this to more
 - e.g., HU Mean and Tumor Area
 - New Model: W₀ + W₁*X₁+W₂*X₂+W₃*X₃
 - W₁*X₁: HU St Dev
 - W₂*X₂: HU Mean
 - W₃*X₃: HU Area

How good is our model?

- Pseudo-R²
 - Value is <u>NOT</u> how much variation the logistic model accounts for
 - Several flavors and interpretation is not straight forward
 - Read up if you use this

How good is our model?

- Hosmer-Lemeshow Goodness-of-Fit Test
 - No Replicates Needed
 - Bin St Dev into 5-10 bins of increasing probability of malignancy
 Want > 5 per bin if possible (We have too little data)
 - Calculate the "actual" probability of malignancy
 - Average the model probabilities for the same point
 - Compare with chi-squared test
 - Gives P-value
 - H₀: Model is a good fit
 - H₁: Model is a <u>poor</u> fit

Hypothesis Testing (Wald Test)

- Is there a significant relationship between HU St Dev and malignancy?
 - Is slope significant?
 - Null (H₀): W₁=0
 - Alternate (H₁): W₁ \= 0

Coefficients,	Standard	Errors,	Odds Ratios,	and 95% Con	fidence Lim	its
Variable	Coeff.	StdErr	p	0.R.	Low	High
1	0.1847	0.0818	0.0240	1.2029	1.0247	1.4120
Intercept	-4.5708	1.9425	0.0186			

Hypothesis Testing (Wald Test)

- Estimate of W₁ = 0.1847
- Standard Error of W₁ Estimate = 0.0818
- Estimate is <u>2.26x</u> the SE so we get a small pvalue and "confirm" HU St Dev adds something to the model

- Does NOT mean it is the best model

Coefficients,	Standard	Errors,	Odds Ratios,	and 95% Co	onfidence L	imits
Variable	Coeff.	StdErr	p	0.R.	Low -	- High
1	0.1847	0.0818	0.0240	1.2029	1.0247	1.4120
Intercept	-4.5708	1.9425	0.0186			

When can I use Binary Logistic Regression?

- Fewer Assumptions
 - Do NOT need linear relationship between outcome and predictor
 - Do NOT need errors to be normal
 - Do NOT need variance same at each predictor value (Homoscedasticity)

When can I use Binary Logistic Regression?

- Need binary outcome
 - Lose precision if you "make" it binary
 E.g., Blood pressure: "high" and "low"
- Observations should still be independent
- Predictor must be linearly related to log odds of
- outcome

Pitfall

- Need relatively large sample size
 - At least 10*# predictors for each outcome
 - For a model with predictors: HU St Dev, HU Mean, and Tumor Area

• 10*3 = **3**0

- So at least 30 malignant and 30 benign
- Big problem for prospective studies

Pitfall

- Large sample size
 - At least 10*# predictors for each outcome
 - Big problem for prospective studies
 - So if you have 1% incidence in a population, then for a prospective study you would need:
 - (10*3/0.01) = 3,000 participants to get 30 malignancies

Further Reading

- 2016 AAPM Stats Refresher (Handouts and Virtual Library Available)
 - Clinical trials and the medical physicist: design, analysis, and our role
 - Implementation and Analysis of Observer Studies in Medical Physics
 - Analysis of Dependent Variables: Correlation and Simple Regression
 - Hypothesis or Hypotheses, That is the Question
- Penn State Stats 501
 - https://onlinecourses.science.psu.edu/stat501/

Cite This Talk/Handout

Sensakovic, WF. TU-AB-KDBRA2-3: Linear and logistic regressions - What they try to explain, and how to interpret the results. 60th Annual Meeting of the AAPM, Nashville, TN July 29-August 2, 2018.

Image Copyright Requirements

<u>https://creativecommons.org/licenses/</u>

How accurate are SLR model estimated values?

- Confidence Interval 20 - New predictor value 15 within our data range $\frac{6}{5}$ 10
- Prediction Interval
 - New Predictor value outside our data range
 - More uncertainty

How accurate are SLR model estimated values?

- At 45mg/mL, CNR
 estimate is 15.5
 95% Cl (14.9, 16.1)
- At 60mg/mL CNR estimate is 20.6

 95% PI (18.2, 23.0)

How accurate are BLR model estimated values?

HU St Dev	95% Low	95% High	"	
33.0000	0.3486	0.9752		
12.0000	0.0114	0.4377	"	· · ·
45.0000	0.4699	0.9995		
20.0000	0.0972	0.6165	1	
37.0000	0.3952	0.9930	2	
18.0000	0.0619	0.5563		
28.0000	0.2717	0.8991	02 -	
11.0000	0.0084	0.4239		
etc.				
				Lagit By +6X; https://acetabuluen.dk/cgi-

