Improving Initial Setup Accuracy and Treatment Efficiency
Alonso R. Gutiérrez, PhD, MBA
Chief Physicist/Associate Professor, FIU

Disclosures
• I am a member of TG-302: Surface image guided RT

Role of Imaging in RT
• Volumetric, x-ray based imaging crucial for interfraction positioning due to highly conformal deliveries
• Limitations:
 – Added dose
 – Temporal snapshot
 – Patient posture visualization
 – No real-time monitoring
 – Motion management
Surface Imaging

- Efficient technology for patient set-up and real-time monitoring:
 - Accurate 3D images
 - Non-ionizing, non-invasive
 - Patient posture visualization
 - Surface as surrogate for respiratory gating
 - Complement x-ray based volumetric imaging

- Why?: Improve the overall (temporal) accuracy of radiation delivery
 - Patient positioning
 - Improve inter-fractional setup accuracy (posture correction)
 - Visualize patient surface changes
 - Reduce setup time (minimize repeating x-ray imaging)
 - Patient monitoring
 - Monitor patient intra-fractionally (assess post x-ray imaging shifts)
 - Quantity inadvertent movements
 - Minimize imaging needs
 - Gated delivery
 - Efficient gating tool for motion management
 - Simultaneous monitoring of patient position and respiratory signal

Video-based Imaging System

Reference: Fraction #

Image: Real-time subtracted

Table 1: Accuracy of conventional and video-assisted setup techniques used on 9 patients

<table>
<thead>
<tr>
<th>Conventional setup</th>
<th>Video-assisted setup</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 2</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>Patient 3</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>Patient 4</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>Patient 5</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Patient 6</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Patient 7</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Population</td>
<td>1.7</td>
<td></td>
</tr>
</tbody>
</table>

Milliken BD, et al. IJROBP. 1997
Optical Commercial Systems

- VisionRT AlignRT
- C-RAD CatalystHD
- humediQ IDENTIFY

Common SI System Overview

Identification
 - Ability to verify patient identity
 - Identify immobilization devices

Positioning
 - Use of SI to position patients in 6D
 - Posture correction

Monitoring
 - Use of SI to monitor patient motion relative to reference position

Gating
 - Use of SI to provide breathing trace for gated deliveries

Typical Patient Positioning Workflow

1. Ready for tx
2. Call up patient in R&V
3. Patient to vault & perform time out
4. Set-up patient and move to iso
5. Correct posture
6. Position and re-acquire reference if needed
7. Final corrections w/ SI
8. Position to <5mm
9. Image? (Yes/No)
10. Start SI monitoring
11. Deliver Tx
Typical Patient Positioning Workflow

1. Ready for tx
2. Call up patient in R&V
3. Patient to vault & perform time out
4. Set-up patient and move to iso
5. Correct posture
6. Position and re-acquire reference (if needed)
7. Image?
 - Yes: Final corrections w/ SI
 - No: Position to <X mm
8. Start SI monitoring
9. Deliver Tx

Improving Setups: PBI

- SI using a DICOM reference provides significantly better reproducibility compared to lasers or kV orthogonal imaging in 23 patients with surgical clips as reference.

Table 2: Residual range error

<table>
<thead>
<tr>
<th>Technique</th>
<th>Anterior (mm)</th>
<th>Superior (mm)</th>
<th>Right/Left (mm)</th>
<th>Vector (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video surface mapping</td>
<td>1.9 ± 2.0</td>
<td>1.0 ± 1.0</td>
<td>1.6 ± 3.1</td>
<td>4.3 ± 2.5</td>
</tr>
<tr>
<td>Orthogonal imaging</td>
<td>1.2 ± 2.0</td>
<td>1.2 ± 2.0</td>
<td>1.3 ± 3.1</td>
<td>3.1 ± 1.5</td>
</tr>
<tr>
<td>Laser</td>
<td>3.9 ± 3.7</td>
<td>4.6 ± 3.9</td>
<td>4.3 ± 4.5</td>
<td>3.8 ± 4.2</td>
</tr>
</tbody>
</table>

Improvement of >50%

6000 fractions (Stanley et al 2017)
Improving Setups: Extremity

Detect rotations

Table 3: Improvements seen when using a reference surface (image at the first fraction) (Vert/Rel), in reductions of setup variability (comparison to, systematic error (SI)) and rotations (vert). The table includes the mean deviation, SD, and range of values.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Vert (mm)</th>
<th>Rel (mm)</th>
<th>SI (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRT</td>
<td>2.3</td>
<td>3.2</td>
<td>4.0</td>
</tr>
<tr>
<td>LRT</td>
<td>0.6</td>
<td>3.2</td>
<td>4.2</td>
</tr>
<tr>
<td>LAT</td>
<td>1.4</td>
<td>3.9</td>
<td>2.6</td>
</tr>
</tbody>
</table>

SI Efficiency Proton PBS Treatments

Treatment fraction completed in 21 minutes

Table 3: Improvements seen when using a reference surface (image at the first fraction) (Vert/Rel), in reductions of setup variability (comparison to, systematic error (SI)) and rotations (vert). The table includes the mean deviation, SD, and range of values.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Vert (mm)</th>
<th>Rel (mm)</th>
<th>SI (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRT</td>
<td>2.3</td>
<td>3.2</td>
<td>4.0</td>
</tr>
<tr>
<td>LRT</td>
<td>0.6</td>
<td>3.2</td>
<td>4.2</td>
</tr>
<tr>
<td>LAT</td>
<td>1.4</td>
<td>3.9</td>
<td>2.6</td>
</tr>
</tbody>
</table>

SI: Systematic error; VRT: Vertically rotated; LAT: Laterally rotated; VRT: Vertically rotated.
Improving Setup: Pelvis

- Surface may not be a reliable surrogate, especially in prone position due to challenges in reproducing pelvic tilt, back shape and differences in organ filling. (Zhao et al 2016)

<table>
<thead>
<tr>
<th>Use</th>
<th>Patient</th>
<th>Surface</th>
<th>System</th>
<th>Soft tissue</th>
<th>Imaging</th>
<th>Group</th>
<th>Position</th>
<th>Metric reported</th>
<th>AP (mm)</th>
<th>CC (mm)</th>
<th>RL (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelvis</td>
<td>DICOM</td>
<td>AlignRT</td>
<td>AlignRT Camera</td>
<td>Pelvic</td>
<td>CT</td>
<td>Weekly</td>
<td>Prone</td>
<td>Mean Residual Shift</td>
<td>3.3</td>
<td>5.1</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Prospective comparison of paired data

- **Supine:** Alphacradle
 - Mean Residual Shift: 3.3, 5.1, 2.8

- **Prone:** bellyboard
 - Mean Residual Shift: 5.1, 6.3, 6.0

• Surface may not be a reliable surrogate, especially in prone position due to challenges in reproducing pelvic tilt, back shape and differences in organ filling. (Zhao et al 2016)

SI Initial Setup Efficiency

Can surface imaging improve the patient setup for proton postmastectomy chest wall irradiation?

- **Slide Courtesy of H Al-Hallaq**

SI Initial Setup Efficiency

- Reduce filming frequency
- Increase throughput

The University of Chicago Medicine WBRT

<table>
<thead>
<tr>
<th>n=50</th>
<th>Before AlignRT</th>
<th>After AlignRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of Patients with shifts < 1cm</td>
<td>64%</td>
<td>92%</td>
</tr>
<tr>
<td>% of Patients with shifts < 1cm; total time < 30mins</td>
<td>44%</td>
<td>72%</td>
</tr>
</tbody>
</table>

Slide Courtesy of H Al-Hallaq
Practical SI Considerations

- Reference image issues
 - Resolution & breathing motion
 - CT FoV
 - HU threshold
 - Reference image fidelity
- ROI selection
 - Large: posture correction
 - Small: tracking
- Learning curve
 - Therapist education
 - Comfort level

Conclusions

- Use of SI technology has increased in recent years
- SI technology has shown to improve accuracy in initial setup for a number of disease sites
- Improvements in overall treatment time have been shown with SI
- Practical issues with SI need to be considered to ensure accurate positioning of patients

Thanks for your attention