HyTEC Spinal Cord Dose Limits for Spine SRS/SBRT

LIJUN MA, PhD, FAAPM
UCSF Radiation Oncology
San Francisco, California, USA

HYTEC Spine NTCP Contributors
Arjun Sahgal, MD, Joe Chang, MD, Jimm Grimm, PhD, Lijun Ma, PhD, Paul Medin, PhD, Young Lee, PhD, Lawrence Marks, MD, Mary Martel, PhD, Josh Yamada, MD, Andrzej Niemierko, PhD, Scott Soltys, MD, Wolfgang Tome, PhD, Shun Wong, MD, Michael Milano, MD, Ellen Yorke, PhD, Andrew Jackson, PhD

* A total of ~40 spine SBRT papers reviewed

Historical Dose Limits: TD5/5 - TD50/5
Conventional 47 - 50 Gy 60-70 Gy

HyTec Dose Limit: TD (1-5% Risk)

Single Fraction 12.4 Gy - 14.0 Gy

Reports of myelopathy from SRS to spinal lesions appear rare (<1%) when the maximum spinal cord dose is limited to the equivalent of 13 Gy in a single fraction or 20 Gy in three fractions. Long-term data are insufficient to calculate a dose–volume relationship for myelopathy when the partial cord is treated with a hypofractionated regimen.
Dosimetric Data

- Worldwide institutions
- 9 RM cases; 66 random control cases
- RM cases: Thecal Sac $D_{max} = 10.6$ to 16.2 Gy /Fx; 25.6 Gy /2Fx; 30.9 Gy /3Fx
- EQD2 modeled ($\alpha/\beta = 2$ Gy)

Logistic Regression Curve for RM

[@5% Risk $\text{EQD2} = 44.6$ Gy](Int J Radiat Oncol Biol Phys, 2013, 85(2), 341-7)
Estimated Dose Limits

<table>
<thead>
<tr>
<th>P</th>
<th>1Fx (Gy)</th>
<th>2Fx(Gy)</th>
<th>3Fx(Gy)</th>
<th>4Fx(Gy)</th>
<th>5Fx(Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>9.2</td>
<td>12.5</td>
<td>14.8</td>
<td>16.7</td>
<td>18.2</td>
</tr>
<tr>
<td>2%</td>
<td>10.7</td>
<td>14.6</td>
<td>17.4</td>
<td>19.6</td>
<td>21.5</td>
</tr>
<tr>
<td>3%</td>
<td>11.5</td>
<td>15.7</td>
<td>18.8</td>
<td>21.2</td>
<td>23.1</td>
</tr>
<tr>
<td>4%</td>
<td>12.0</td>
<td>16.4</td>
<td>19.6</td>
<td>22.2</td>
<td>24.4</td>
</tr>
<tr>
<td>5%</td>
<td>12.4</td>
<td>17.0</td>
<td>20.3</td>
<td>23.0</td>
<td>25.3</td>
</tr>
</tbody>
</table>

Int J Radiat Oncol Biol Phys, 2013, 85(2), 341-347
Dosimetric Data

- 2 RM cases; 228 patients; 259 lesions
- All are single fraction delivery
- RM cases: Cord $D_{\text{max}} = 13.4 \text{ Gy}$ and 13.6 Gy
- DVH atlas obtained for all cases published on-line in Supplementary Data

Median Cord $D_{\text{max}} = 13.85 \text{ Gy}$ for 2 RM cases out of 295 cases. Therefore 14 Gy/1Fx appears safe (<1% risk)
The logistic model of Gibbs 2007 (1/19) + Katsoulakis 2017 (2/259) data in single-fraction equivalent dose (GK model) is shown; since the confidence intervals extend all the way from 3% to 96% at high dose, the model itself was only plotted at lower dose.
Challenging Issues

- Cord vs. PRV (e.g. 1-2 mm margin or Thecal Sac)
- LQ formula (e.g. EQD2 to 1Fx dose conversion)
- Dmax Specifications (e.g. Plan vs. Delivered Dose)

Summary

- **De novo Treatment**: Point maximum doses (Dmax) as conservative thresholds for approximate 1-5% risk between 12.4 (Sahgal) - 14.0 Gy (Gibbs/Katsoulakis) @1Fx, via LQ the following limits at higher fx number:
 - 17.0 – 19.3 Gy/2Fx, 20.3- 23.1 Gy/3Fx, 23.0- 26.2 Gy/4Fx, 25.3 – 28.8 Gy/5Fx

- **Re-Irradiation**
 - (1) < 70 Gy in total EQD2
 - (2) < 25 Gy EDQ2 and < 50% for the SBRT portion
 - (3) > 5 months in minimum time interval