PATIENT EXPOSURE AND ADVERSE RADIATION EFFECTS FROM DIAGNOSTIC & THERAPEUTIC NUCLEAR MEDICINE PROCEDURES International Experience

Professor Dale Bailey PhD

Faculty of Health Sciences, University of Sydney

& Department of Nuclear Medicine, Royal North Shore Hospital, Sydney AUSTRALIA

An exciting time for Nuclear Medicine...

Diagnostic Imaging

- Great advances in peptide radiochemistry with radiometals (e.g., ⁶⁸Ga, ⁶⁴Cu, ⁸⁹Zr) for PET
- New devices: PET/MRI, solid state detectors, SiPMTs

Therapeutics

- Great advances in peptide radiochemistry with radiometals (e.g., ¹⁷⁷Lu, ⁶⁷Cu, ⁹⁰Y) for therapy
- New therapies: Metastatic NETs, Metastatic Prostate Ca, Metastatic Pancreatic AdenoCa

WE ARE ENTERING THE ERA OF THERANOSTICS

THERANOSTICS (THERApy & diagNOSTICS)

The University of Sydney

THERANOSTICS – Neuroendocrine Tumours (NETs)

2018 Society of Nuclear Medicine Image of the Year

IMAGE OF THE YEAR: PSMA PET before and after lutetium-177 PSMA617 theranostic in 8 patients with metastatic prostate cancer exhausted standard who therapeutic options. 68Ga-PSMA11 PET maximum intensity projection (MIP) images at baseline and 3 months after 177Lu-PSMA617 in 8 patients with PSA decline \geq 98 percent in a prospective phase II study. Any disease with SUV over 3 is in red. Credit: Michael Hofman et al, Peter MacCallum Cancer Centre, Melbourne, Australia.

2018 Society of Nuclear Medicine Image of the Year

IMAGE OF THE YEAR: PSMA PET before and after lutetium-177 PSMA617 theranostic in 8 patients with metastatic prostate cancer exhausted standard who therapeutic options. 68Ga-PSMA11 PET maximum intensity projection (MIP) images at baseline and 3 months after 177Lu-PSMA617 in 8 patients with PSA decline \geq 98 percent in a prospective phase II study. Any disease with SUV over 3 is in red. Credit: Michael Hofman et al, Peter MacCallum Cancer Centre, Melbourne, Australia.

The University of Sydney

THERANOSTICS AVAILABLE – RNS Hospital, Sydney 2018

Target	Examples	Mechanism	D _x Radionuclide	Imaging	R _x Radionuclide	Imaging
Thyroid	Thyroid Ca	Cellular uptake	¹²³ l or ¹³¹ l	SPECT	¹³¹ Ι (β ⁻)	SPECT
Neural crest tumours	Neuroblastoma, phaeo, carcinoid	Cellular uptake	¹²³ I-MIBG	SPECT	¹³¹ Ι (β ⁻)-MIBG	SPECT
Neuroendocine tumours (NETs)	Pancreatic, gut NETs	Somatostatin receptor	⁶⁸ Ga-DOTATATE PET		¹⁷⁷ Lu (β ⁻)-DOTATATE	SPECT
Liver neoplasia	CRC, HCC, NETs, melanoma	Radio- embolisation	^{99m} Tc- Microsphere	SPECT	⁹⁰ Υ (β ⁻)-SIR-Spheres	PET
Lymphoma	Diffuse large B cell non-Hodgkin's lymphoma	Antibody targeting	¹³¹ I-Rituximab	SPECT	¹³¹ I (β ⁻)-Rituximab or ** ¹⁷⁷ Lu (β ⁻)-Rituximab	SPECT
Skeleton	Prostate Ca 2°s	Bone seeking ion	^{99m} Tc-MDP (Bone Scan)	SPECT	²²³ Ra (α^{2+})-RaCl ₂	SPECT
Prostate	Prostate cancer	PSMA targeting	⁶⁸ Ga-PSMA	PET	¹⁷⁷ Lu (β ⁻)-PSMA	SPECT

** Hopefully soon

RADIOPHARMACEUTICALS - they are RADIOactive & they are PHARMACEUTICALS

RADIOPHARMACEUTICAL	Mass of Radionuclide	Mass of Pharmaceutical
FDG PET/CT Whole Body ([¹⁸ F]FDG – 250 MBq)	0.08 ng	0.72 ng
Somatostatin Receptor (NET) PET/CT ([⁶⁸ Ga]DOTATATE – 200 MBq)	0.14 ng	3 ng
Thyroid SPECT ([¹²³ I]Nal — 160 MBq)	2.2 ng	2.7 ng
Bone scan for metastatic cancer ([^{99m} Tc]MDP - 800 MBq)	4.1 ng	12.9 ng
Thyroid Cancer Whole Body Surveillance Scan ([¹³¹ I]Nal – 160 MBq)	35 ng	41 ng

DIAGNOSTIC IMAGING – Radiation Doses

Procedure/Radiopharmaceutical	ED from Radiopharmaceutical (mSv)	ED from CT (mGy)	Approx. Total ED (mSv)	Additional Risk of Fatal Cancer (0.05 deaths per Sv)
Myocardial Perfusion SPECT/CT ([^{99m} Tc]MIBI – 1000 MBq) (Stress + Rest)	12.5	1.2	~14	0.07%
V/Q Lung scan ([99m Tc]Technegas - 40 MBq (V) / [99m Tc]MAA - 160 MBq (Q))	0.6(V) + 1.6(Q)	2	~4	0.02%
Bone scan for metastatic cancer ([^{99m} Tc]MDP – 800 MBq) (Incl. 1 SPECT/CT)	4.6	2	~7	0.035%
FDG PET/CT Whole Body ([¹⁸ F]FDG – 250 MBq)	5	8-10	14	0.07%
Somatostatin Receptor (NET) PET/CT ([⁶⁸ Ga]DOTATATE – 200 MBq)	4.2	8-10	13	0.07%
Renal scan ([^{99m} Tc]MAG3 – 250 MBq)	1.8	2	~4	0.02%
Prostate Cancer PET/CT ([⁶⁸ Ga]PSMA – 200 MBq)	3-4	8-10	~12	0.06%
Thyroid SPECT ([¹²³ I]Nal – 200 MBq)	2.5	-	2.5	0.013%
Thyroid Cancer Whole Body Surveillance Scan ($[^{131}I]$ Nal – 400 MBq) (incl. 1 SPECT/CT)	24	2	~25	0.13%
X-ray CTPA (240 mAs, 130 kV _p)	-	4-20	~10	0.05%
X-ray CT: Thorax + Abdomen + Pelvis (240 mAs, 130 kV _p)	-	21 (7+8+6)	~20	0.11%

Reported AEs for Diagnostic Radiopharmaceuticals

BRIEF COMMUNICATION

Evaluation of Radiopharmaceutical Adverse Reaction Reports to the British Nuclear Medicine Society from 2007 to 2016

Tracia-Gay Kennedy-Dixon¹, Maxine Gossell-Williams², Margaret Cooper¹, Moez Trabelsi¹, and Sobhan Vinjamuri³

¹Radiopharmacy, Royal Liverpool and Broadgreen University Hospitals Trust, Liverpool, United Kingdom; ²Pharmacology Section, Department of Basic Medical Sciences, University of the West Indies, Mona Campus, Kingston, Jamaica; and ³Royal Liverpool and Broadgreen University Hospitals Trust (consultant), Liverpool, United Kingdom

Summary (D_x Radiopharmaceuticals):

- 2.5 3.1 reports per 100,000 (0.0025% 0.0031%)
- Most common symptoms: rash, itching, vomiting

Comparison*:

- Iodinated contrast: 1-12%
- Non-iodinated contrast: 3%

Results: During the study period,

there were 204 reports of radiopharmaceutical adverse reactions, of which 13 were considered invalid, primarily because of incomplete entries or because a causal relationship between the radiopharmaceutical and the adverse reaction could not be determined. Tetrofosmin (34 reports) and oxidronate (32 reports) had the highest prevalence, followed by medronate (21 reports) and then sestamibi and nanocolloid (14 reports each). Rash (84 reports), itching (46 reports), and vomiting (30 reports) were the 3 most frequently occurring adverse reactions. Most reports (96.8%) were for diagnostic radiopharmaceuticals. **Conclusion:** The prevalence of adverse reactions to radiopharmaceuticals reported in the BNMS database remains low, with a frequency of 3.1 reports per 100,000 administrations in 2013 and 2.5 per 100,000 administrations in 2015. In our review spanning 10 years, we did not find any particular concern about the use of radiopharmaceuticals.

Key Words: radiopharmaceuticals; adverse reactions; BNMS; pharmacovigilance

J Nucl Med 2017; 58:2010–2012 DOI: 10.2967/jnumed.117.194092

^{*} Katayama H et al. Adverse reactions to ionic and nonionic contrast media. A report from the Japanese Committee on the Safety of Contrast Media. Radiology. 1990;175(3):621-628

DIAGNOSTIC RADIOPHARMACEUTICALS – Adverse Reactions

- In the published literature concerning safety of PET drugs, in 1996 Silberstein, Ryan and the Pharmacopeia Committee of the Society of Nuclear Medicine published in the Journal of Nuclear Medicine reporting a five year prospective study of 18 collaborating institutions using a questionnaire which enumerated monthly the number of procedures used and the adverse reactions noted for radiopharmaceuticals and non-radioactive drugs used in nuclear medicine[†];
- The study utilized operational definitions for adverse reactions and significant adverse reactions and devised an algorithm to categorize probability of causation. The published study included a copy of the actual questionnaire, which required itemization of any and all radiopharmaceuticals administered, adverse reactions to radiopharmaceuticals, dose, route, reaction, etc., as well as total non-radiopharmaceuticals (such as adenosine or dipyridamole) administered and adverse reactions to these agents;
- No reactions are reported for FDG PET. The study also performed a reference check of listed adverse reactions by references and no adverse reactions were listed by the U.S. Pharmacopeial Convention's Drug Information for the Health Care Professional, 1995;
- Silberstein and the Pharmacopeia Committee of the Society of Nuclear Medicine also conducted a retrospective and prospective study of the prevalence of adverse reactions to PET radiopharmaceuticals published in 1998 in the Journal of Nuclear Medicine[‡]. Dr. Silberstein reported 22 PET centres provided monthly adverse reaction data from 1994 to 1997 related to PET drug administration in 47,876 dosages. In addition, retrospective data was collected from the opening of these centres on 33,925 radiopharmaceutical dosages;
- In no case were there any adverse reactions.

[†]Silberstein EB, Ryan J. Prevalence of adverse reactions in nuclear medicine. Pharmacopeia Committee of the Society of Nuclear Medicine. J Nucl Med. 1996 Jan;37(1):185-192.

[‡]Silberstein EB. Prevalence of adverse reactions to positron emitting radiopharmaceuticals in nuclear medicine. Pharmacopeia Committee of the Society of Nuclear Medicine. J Nucl Med. 1998 Dec;39(12):2190-2192.

The University of Sydney

Little or no patient-specific info

PROs	Little prep - routine	
CONs	"One size fits all" approach may not always work; Wide spectrum of responses: Over-treatment in some, under- treatment in others?	i

Minimal patient-specific info Little or no patient-specific info (e.g., height & weight)						
PROs	Little prep - routine	Only minor adjustments to dosing regime required – can be done on day of treatment				
CONs	"One size fits all" approach may not always work; Wide spectrum of responses: Over-treatment in some, under- treatment in others?	Insufficient data to make an informed decision on dose; Information used may not be relevant to disease burden	i			

	Little or no patient-specific info	Minimal patient-specific info H o (e.g., height & weight)	ighly specific dose prescriptio (e.g., image-guided PTVs)	
PROs	Little prep - routine	Only minor adjustments to dosing regime required – can be done on day of treatment	Best option for optimal treatment response (?)	
CONs	"One size fits all" approach may not always work; Wide spectrum of responses: Over-treatment in some, under- treatment in others?	Insufficient data to make an informed decision on dose; Information used may not be relevant to disease burden	Time consuming – often requires imaging & other investigations before planning/commencing therapy	
	Tyreid 131			

L	ittle or no patient-specific info	Minimal patient-specific info H o (e.g., height & weight)	ighly specific dose prescriptio (e.g., image-guided PTVs)
PROs	Little prep - routine	Only minor adjustments to dosing regime required – can be done on day of treatment	Best option for optimal treatment response (?)
CONs	"One size fits all" approach may not always work; Wide spectrum of responses: Over-treatment in some, under- treatment in others?	Insufficient data to make an informed decision on dose; Information used may not be relevant to disease burden	Time consuming – often requires imaging & other investigations before planning/commencing therapy
	Less ← Info	<section-header></section-header>	ore

THERAPEUTIC RADIOPHARMACEUTICALS

RADIOPHARMACEUTICAL	Particle	Mass of Radionuclide	Mass of Pharmaceutical
Somatostatin Receptor (NET) PRRT ([¹⁷⁷ Lu]DOTATATE — 8000 MBq)	β-	1.97 μg	200 µg
Xofigo ([²²³ Ra]RaCl ₂ – 4 MBq)	α ²⁺	7.6 ng	11.2 ng
Thyroid Cancer Ablation ([¹³¹ I]Nal – 4000 MBq)	β-	0.87 µg	1.0 ng
SIR-Spheres ([⁹⁰ Y]resin microspheres — 1500 MBq)	β-	75 ng	(Resin microspheres)

THERAPEUTIC RADIONUCLIDES – Radiation Doses

Procedure/Radiopharmaceutical	ED from Radiopharmaceutical (Gy)
Somatostatin Receptor (NET) PRRT ([¹⁷⁷ Lu]DOTATATE – 8000 MBq)	0.4
Bony metastases from Prostate Ca: Xofigo TM ([223 Ra]RaCl ₂ – 4 MBq)	(mGy)
Thyroid Cancer Ablation ([¹³¹ I]Nal – 4000 MBq)	0.2 - 0.3
SIRT: SIR-Spheres ([⁹⁰ Y]resin microspheres – 1500 MBq)	2 (~40 Gy to liver)

RADIOIODINE FOR THYROID CANCER THE 1st THERANOSTIC IN NUCLEAR MEDICINE

The Harvard Crimson

May 24, 1949

Hertz to Use Nuclear Fission in Cure for Cancer

By Donald G. Vincent

Dr. Saul Hertz, instructor in Medicine in the Medical School, has announced that he has founded an institution, The Radioactive Isotope Research Institute, whose purpose is to apply radioactive fission products to the treatment of the thyroid cancer, goiter, and other malignant growths.

Dr. Hertz is connected with both the Medical School and Beth Israel Hospital as medical associate and research associate. In the past, he has been in charge of the Thyroid Clinic of the Massachusetts General Hospital and Research Associate at the Massachusetts Institute of Technology.

The research conducted by Dr. Hertz and others which led to the Radioactive Isotope Research Institute, was financed by a grant from the John and Mary Markle Fund in New York City and the Milton N. Proctor Fund here. Most of the work was done at the Massachusetts General Hospital and at M.I.T.

ADVERSE EVENTS – RADIOIODINE ¹³¹I (THYROID CANCER)

and the second se	
A CONTRACTOR OF	
and the second	
Contraction of the second s	
A CONTRACT OF	
and the second	
and the second	
in the second	
and the second	
the second s	
	32
	2
	C. Harrison
	CASH CASH
	1001201
	C12102
	CASING AND A
	00000
	CH2102

Adverse Event	Reported Incidence	Transient/Chronic	
Gastritis/Nausea	30%	Transient	
Radiation thyroiditis	10%-20%	Transient	
Sialadenitis	$\leq 30\%$	Transient	
Xerostomia	4%-20%	Chronic	
Bone marrow suppression	20%	Transient	
Amenorrhea	20%-27%	Transient	
Dry eye	Rare	Transient	
Leukaemia (Cum. Doses > 20 GBq)	Slight	Chronic	
Second Primary Malignancy	No significant risk	-	

ADVERSE EVENTS – [²²³Ra]Xofigo (PROSTATE CANCER)

Table 3. Adverse Events That Occurred in at Least 5% of Patients in Either Study Group in the Safety Population.								
Adverse Event		Radium-223 (N = 600)		Placebo (N = 301)				
	All Grades	Grade 3	Grade 4	Grade 5*	All Grades	Grade 3	Grade 4	Grade 5*
				number of pa	tients (percent)			
Hematologic								
Anemia	187 (31)	65 (11)	11 (2)	0	92 (31)	37 (12)	2 (1)	1 (<1)
Thrombocytopenia	69 (12)	20 (3)	18 (3)	1 (<1)	17 (6)	5 (2)	1 (<1)	0
Neutropenia	30 (5)	9 (2)	4 (1)	0	3 (1)	2 (1)	0	0
Nonhematologic								
Constipation	108 (18)	6 (1)	0	0	64 (21)	4 (1)	0	0
Diarrhea	151 (25)	9 (2)	0	0	45 (15)	5 (2)	0	0
Nausea	213 (36)	10 (2)	0	0	104 (35)	5 (2)	0	0
Vomiting	111 (18)	10 (2)	0	0	41 (14)	7 (2)	0	0
Asthenia	35 (6)	5 (1)	0	0	18 (6)	4 (1)	0	0
Fatigue	154 (26)	21 (4)	3 (1)	0	77 (26)	16 (5)	2 (1)	0
Deterioration in general physical health	27 (4)	9 (2)	2 (<1)	5 (1)	21 (7)	8 (3)	2 (1)	2 (1)
Peripheral edema	76 (13)	10 (2)	0	0	30 (10)	3 (1)	1 (<1)	0
Pyrexia	38 (6)	3 (1)	0	0	19 (6)	3 (1)	0	0
Pneumonia	18 (3)	9 (2)	0	4 (1)	16 (5)	5 (2)	2 (1)	0
Urinary tract infection	47 (8)	7 (1)	0	0	28 (9)	4 (1)	1 (<1)	1 (<1)
Weight loss	69 (12)	4 (1)	0	0	44 (15)	5 (2)	0	0
Anorexia	102 (17)	9 (2)	0	0	55 (18)	2 (1)	0	0
Decreased appetite	35 (6)	2 (<1)	0	0	13 (4)	0	0	0
Bone pain	300 (50)	120 (20)	5 (1)	0	187 (62)	74 (25)	3 (1)	0
Muscular weakness	9 (2)	2 (<1)	1 (<1)	0	17 (6)	6 (2)	0	0
Pathologic fracture	22 (4)	13 (2)	0	0	15 (5)	8 (3)	1 (<1)	0
Progression of malignant neoplasm	77 (13)	9 (2)	4 (1)	55 (9)	44 (15)	4 (1)	1 (<1)	33 (11)
Dizziness	43 (7)	2 (<1)	0	0	26 (9)	2 (1)	0	0
Spinal cord compression	25 (4)	14 (2)	6 (1)	1 (<1)	23 (8)	16 (5)	1 (<1)	0
Insomnia	27 (4)	0	0	0	21 (7)	1 (<1)	0	0
Hematuria	30 (5)	7 (1)	0	0	15 (5)	3 (1)	0	0
Urinary retention	25 (4)	9 (2)	0	0	18 (6)	6 (2)	0	0
Dyspnea	49 (8)	10 (2)	1 (<1)	1 (<1)	26 (9)	7 (2)	0	3 (1)

The University of Sydney

ADVERSE EVENTS – [¹⁷⁷Lu]**DOTATATE (NETs)**

Table 4. Adverse Events (Safety Population).*									
Event	¹⁷⁷ Lu-Dotatate Group (N=111)		Control Group (N=110)		P Value†				
	Any Grade	Grade 3 or 4	Any Grade	Grade 3 or 4	Any Grade				
	number of patients (percent)								
Any adverse event	105 (95)	46 (41)	92 (84)	36 (33)	0.01				
Gastrointestinal disorders									
Nausea	65 (59)	4 (4)	13 (12)	2 (2)	<0.001				
Vomiting	52 (47)	8 (7)	11 (10)	1 (1)	<0.001				
Abdominal pain	29 (26)	3 (3)	29 (26)	6 (5)	1.00				
Diarrhea	32 (29)	3 (3)	21 (19)	2 (2)	0.11				
Distension	14 (13)	0	15 (14)	0	0.84				
General disorders									
Fatigue or asthenia	44 (40)	2 (2)	28 (25)	2 (2)	0.03				
Edema peripheral	16 (14)	0	8 (7)	0	0.13				
Blood disorders									
Thrombocytopenia	28 (25)	2 (2)	1 (1)	0	<0.001				
Anemia	16 (14)	0	6 (5)	0	0.04				
Lymphopenia	20 (18)	10 (9)	2 (2)	0	<0.001				
Leukopenia	11 (10)	1 (1)	1 (1)	0	0.005				
Neutropenia	6 (5)	1 (1)	1 (1)	0	0.12				
Musculoskeletal disorders									
Musculoskeletal pain	32 (29)	2 (2)	22 (20)	1 (1)	0.16				
Nutrition disorders									
Decreased appetite	20 (18)	0	9 (8)	3 (3)	0.04				
Nervous system disorders									
Headache	18 (16)	0	5 (5)	0	0.007				
Dizziness	12 (11)	0	6 (5)	0	0.22				
Vascular disorders									
Flushing	14 (13)	1 (1)	10 (9)	0	0.52				
Skin disorders									
Alopecia	12 (11)	0	2 (2)	0	0.01				
Respiratory disorders									
Cough	12 (11)	0	6 (5)	0	0.22				

The University of Sydney

Strosberg J et al. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med. 2017;376(2):125-35

LONG-TERM ADVERSE EVENTS – [¹⁷⁷Lu]DOTATATE (NETs)

Long-term Adverse Event	Reported Incidence
Acute Leukaemia	0.7%
Myelodysplastic Syndrome	1.5%
Renal Failure attributable to PRRT	None
Liver Failure	None

1214 patients treated with 4 cycles [¹⁷⁷Lu]Lutate 2000-2015 610 were evaluable with follow-up

ADVERSE EVENTS – [⁹⁰Y]SIR-SPHERES (SIRT)

	FOLFOX alone (n=571)				FOLFOX plus SIRT (n=507)			
	Grade 1-2	Grade 3	Grade 4	Grade 5	Grade 1–2	Grade 3	Grade 4	Grade 5
Overall	189 (33%)	266 (47%)	103 (18%)	11 (2%)	131 (26%)	239 (47%)	126 (25%)	10 (2%)
Haematological	102 (18%)	108 (19%)	56 (10%)	1 (<1%)	109 (21%)	144 (28%)	86 (17%)	1 (<1%)
Neutropenia	50 (9%)	89 (16%)	48 (8%)	1 (<1%)	55 (11%)	115 (23%)	71 (14%)	0
Febrile neutropenia	0	11 (2%)	5 (1%)	0	0	25 (5%)	7 (1%)	1 (<1%)
Thrombocytopenia	77 (13%)	6 (1%)	1 (<1%)	0	153 (30%)	37 (7%)	2 (<1%)	0
Leucopenia	28 (5%)	10 (2%)	3 (1%)	0	41 (8%)	20 (4%)	10 (2%)	0
Non-haematological	265 (46%)	232 (41%)	61 (11%)	10 (2%)	219 (43%)	218 (43%)	59 (12%)	9 (2%)
Fatigue	275 (48%)	28 (5%)	0	0	261 (51%)	43 (8%)	0	0
Diarrhoea	256 (45%)	35 (6%)	2 (<1%)	0	189 (37%)	33 (7%)	1 (<1%)	0
Pulmonary embolism	1 (<1%)	7 (1%)	19 (3%)	0	2 (<1%)	4 (1%)	24 (5%)	0
Neuropathy peripheral	307 (54%)	32 (6%)	1 (<1%)	0	273 (54%)	18 (4%)	0	0
Abdominal pain	95 (17%)	13 (2%)	0	0	151 (30%)	30 (6%)	1 (<1%)	0
SIRT-associated	13 (2%)	9 (2%)	1 (<1%)	0	52 (10%)	24 (5%)	3 (1%)	3 (1%)
Ascites	2 (<1%)	4 (1%)	0	0	23 (5%)	6 (1%)	0	0
Blood bilirubin increased	3 (1%)	2 (<1%)	0	0	6 (1%)	3 (1%)	0	0
Gastric ulcer	0	0	0	0	8 (2%)	3 (1%)	1 (<1%)	0
Hyperbilirubinaemia	1 (<1%)	1 (<1%)	0	0	2 (<1%)	3 (1%)	0	0
Gastrointestinal haemorrhage	0	0	1 (<1%)	0	2 (<1%)	1(<1%)	2 (<1%)	0
Radiation hepatitis	0	0	0	0	2 (<1%)	2 (<1%)	0	2 (<1%)
Duodenal ulcer	1 (<1%)	0	0	0	4 (1%)	3 (1%)	0	0
Pancreatitis	0	0	0	0	1 (<1%)	2 (<1%)	0	0
Hepatic failure	0	0	0	0	0	1 (<1%)	0	1 (<1%)
Jaundice	0	2 (<1%)	0	0	0	0	0	0
Jaundice cholestatic	0	0	0	0	0	2 (<1%)	0	0
Hepatic encephalopathy	0	0	0	0	0	2 (<1%)	0	0
Duodenitis	0	0	0	0	4 (1%)	1(<1%)	0	0
Portal hypertension	1 (<1%)	0	0	0	0	1(<1%)	0	0
Duodenal ulcer haemorrhage	0	0	1 (<1%)	0	0	0	0	0
Cholecystitis acute	0	0	0	0	0	1(<1%)	0	0
Perihepatic abscess	0	0	0	0	0	1(<1%)	0	0
Gastritis	4 (1%)	0	0	0	18 (4%)	0	0	0
Oesophagitis	3 (1%)	0	0	0	2 (<1%)	0	0	0
Splenomegaly	1 (<1%)	0	0	0	2 (<1%)	0	0	0
Oesophageal ulcer	0	0	0	0	1 (<1%)	0	0	0

Data en (%). Table shows grade 3 or worse haematological events occurring in at least 5% of patients, grade 3 or worse non-haematological events occurring in at least 5% of patients, and all SRT-associated adverse events. Worst grade reported per patient per category, sorted by prevalence of grade 3 or worse. SIRT-selective internal natiotherapy.

Table 2: Adverse events reported in each treatment group

Extravasated Injection – [¹⁷⁷Lu]Lutate Therapy

The University of Sydney

2017:02:02 7.60000e+06 kBq 0.0 HRS POST MI

100.0%

2017:02:02

6.51704e+06 kBq

65.8%

3.8 HRS POST MI

2017:02:02 4.73164e+06 kBq 62.3% 6.2 HRS POST M

2017:02:03 1.41525e+06 kBq 18.6% 22.7 HRS POST IM

2017:02:07 396368. kBq 5.2% 119.2 HRS POST IVI

CONCLUSIONS

Diagnostic radiopharmaceuticals are extremely safe:

- Homeopathic amount of active compound involved
- Low levels of exposure to ionising radiation
- Addition of CT to SPECT & PET has roughly doubled the radiation dose

Radionuclide therapies are well tolerated in most subjects:

- Low levels of active compound
- Most reported AEs are usually transient
- Bone marrow is usually considered the organ at risk
- Very low levels of long-term or late effects such as secondary malignancy

Radionuclide-Based Molecular Imaging 2014-2018

