

Christian Rønn Hansen

Odense University Hospital. Laboratory of Radiation Physics. Odense. Denmark. University of Southern Denmark. Institute of Clinical Research. Odense. Denmark. School of Physics - The University of Sydney. Institute of Medical Physics. Sydney. Australia.

Clinical Experience with Philips Auto-Planning

Mail: christian.roenn@rsyd.dk

Disclosure

- Danish Cancer Society
- Danish Cancer Research Fund
- Odense University Hospital University of Southern Denmark

Aims and challenges of automated planning

Aims

- Increase treatment plan quality
- Handle high treatment plan complexity
- Better efficiency
- Reduce inter planner variation

Challenges

- Multi center use of Autoplan
- Overlapping PTVs with OAR
- PTV target in air or near surface
- Large density differences in target areas
- Dose distribution and conformity for stereotactic patients

How does Autoplan work

- Mimic treatment planner
- Evaluate plan according to protocol
- Fine tune objectives

	Structure	Dose con- straint OAR [Gy]	SHOUL	Cochlea	D _{mean} ≤ 45Gy og D _{3%} ≤ 55Gy		
ABSOLUTE	Brain stem	D _{max} ≤ 54Gy		Parotid gland	 Contralateral parotid: D_{mean}≤ 20Gy Both parotids: D_{mean} ≤26Gy 		
				Mandible	Hotspots in the mandible should be avoided	DAHANCA Radiotherapy	Guidelines 2013 – English version 2.0, January 30th 2015
	Spinal cord	D _{max} ≤ 45Gy	CAN	Pituitary gland	D _{mean} ≤30Gy	Radiothera	HANCA Py Guiden
<u>S</u>	Anterior eye (conjunctiva,	D _{max} ≤30Gy		Brain	D _{max} ≤ 60Gy		013 ^{Adennes}
ST	lacrimal gland, cornea, iris)*			Submandibular gland Oral cavity	D _{mean} ≤ 35Gy D _{mean} ≤ 30Gy for non-		
	Chiasm and optic	D _{max} ≤ 54Gy		Lips Larynx	involved oral cavity D _{mean} ≤ 20Gy D _{mean} ≤44 Gy	DAHANCA	
	nerve			Thyroid gland	D _{mean} <40 Gy		
	Posterior eye	D _{max} ≤ 45Gy					09-07-2018
	(retina)			Oesophagus	D _{mean} ≤ 30Gy	RADIOTHERAPY & ONCOLOGY	ESTRO

Treatment Techniques											
File	que Name Hteam_66_60_50_FINAL Trial to Create	?									
Planning Beams Auto-Plan Descri	Hteam_66-60-50	Help									
Auto-Planning Settings	Organ At Risk (OAR) Optimization Goals										
Max Iterations Engine Type	ROI Type Dose Volume Gy (RBE) (%) Priority	Compromise									
₹50 ◆ Biological	◆ BrainStem ✓ Max Dose → 54 High										
Advanced Settings											
Scorecard											
H_Hals666050_FINAL		- 7									
Target Optimization Goals											
ROI Gy (RBE)	↓ Šubmand_R ✓ Mean Dose ↓ 35 High	- 7									
	↓ Submand_L ✓ Mean Dose ↓ 35 High										
	↓ LarynxSG ✓ Mean Dose ↓ 130 High										
	→ LarynxG I Mean Dose I 30 High										
	OralCavity Mean Dose I i an Hinth										
Add Delete Add Delete											

Create Technique from Current Trial

Apply and Optimize

Autoplan Odense

- Autoplan is clinical standard for:
 - H&N
 - Brain
 - Esophagus
 - Bladder (adaptive triple plan generation)
 - Prostate
 - Cervix
 - Rectum
 - Hippocampus sparing whole brain
 - Conformal palliation
- Still challenging cases
 - Lung
 - SBRT Lung

H&N - step and shoot IMRT

- 30 H&N patients
- Autoplan sparing OAR better
- Reduced inter planner variation

Hazell et al. J Appl Clin Med Phys. 2016

Blinded implementation of Autoplan on H&N

- First 30 clinical Autoplan patients
 - Manual VMAT plan create
 - Autoplan VMAT plan create
 - No comparison between the plans before after they were final
 - Blinded for evaluations
 - Best plan selected for treatment
 - > 29 of 30 plans treated were Autoplan
 - > The operator time is reduced by a factor of 2 (60 min 30 min)

Hansen et al. Clin Transl Radiat Oncol. 2016

H&N Manual vs Autoplan Population mean DVH

30 patients

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0

10

Relative volume, p-value

Plan comparison H&N

Manual

Autoplan

Sparing of Organ at Risk for H&N

		Autop	lan	Manu	ıal		
OAR	Unit	Mean	STD	Mean	STD	Difference	Р
Spinal cord	[Gy]	20.2	6.9	22.9	5.8	-2.7	< 0.001
Brainstem	[Gy]	3.5	4.0	5.1	4.7	-1.6	< 0.001
Oral cavity	[Gy]	31.6	13.3	34.3	12.8	-2.7	< 0.001
Libs of mouth	[Gy]	12.3	7.7	15.2	6.8	-2.9	< 0.001
Parotid gland ipsi*	[Gy]	23.4	16.4	25.5	15.7	-2.1	< 0.001
Parotid gland con**	[Gy]	18.5	8.1	20.5	8.8	-2.0	0.004
Submandibular gland ipsi*	[Gy]	53.2	11.4	56.0	7.7	-2.8	0.01
Submandibular gland con**	[Gy]	34.0	19.2	40.5	18.9	-6.5	0.0001
Mandible	[Gy]	30.2	9.4	32.3	8.9	-2.1	0.0002
Thyroid gland	[Gy]	34.6	13.3	37.1	11.2	-2.5	0.0007
Larynx	[Gy]	39.1	9.4	44.8	8.7	-5.7	0.0004
Body	[Gy]	9.3	3.0	9.8	2.9	-0.5	< 0.001

~10% dose reduction

Prostate

50 Patients78 Gy in 39 fractionsSelect Manual vs Autoplan

Results

- Gains like H&N
- Spare Rectum. Bladder. Bowel and femur head better
 Manual
 Autoplan

Prostate Manual vs Autoplan Population mean DVH

Autoplan for Esophagus

32 Patients 60-50 Gy in 30 fractions Select manual vs Autoplan

Results

- Automatic treatment planning facilitates fast generation of high-quality Automatic treatment planning facilitates fast generation of high-quality 31/32 Autoplan were selected
- Spare lung much better.
- Heart dose can go up.
- Auromatic treatment planning factifiate. treatment plans for esophageal cancer Mean cord dose goes up.

Moren Nielsen[®], ^{Inders Smedegaard Berrelsen[®], ^{Irene} Hazell[®], ^{Era Holtwee^t}, ^{Irene Hazell[®], ^{Era Holtwee^t}, ^{Irene Hazell[®], ^{Era Holtwee^t}, ^{Irene Berrehou^{ss}} and ^{Irene Berrehou^{ss}} and ^{Irene Hazell[®], ^{Era Holtwee^t}, ^{Irene Berrehou^{ss}</sub> and ^{Irene Berrehou^{ss}}, ^{Irene Hazell[®], ^{Era Holtwee^t}, ^{Irene Berrehou^{ss}</sub> and ^{Irene Berrehou^{ss}}, ^{Irene Hazell[®], ^{Irene Hazell}}}}}}}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup> Christian Romn Hansen & Morten Nielsen, Anders Smedegaard Bertelsen, Frene Hazell Ruta Zukauskaite Hansen et al. Acta Oncol. 2017

ACTAGICA

Esophagus organ at risk doses Population mean DVH

- Autoplan selected in 31 of 32 pts
 - Reduction of lung dose

0.8

0.6

0.4

0.2

0⊾ 0

10

20

30

40

50

60

Relative volume, p-value

- No difference in heart dose
- Increased spinal canal dose

Mean DVH for heart

Challenges using Autoplan

PTV target in air or near surface

- GTV near surface \rightarrow 3D printed bolus
- CTV near surface → crop CTV to under the skin or 3D printed bolus
- PTV near surface \rightarrow crop PTV to under the skin
 - Less robust to setup uncertainties, however VMAT treatment

GTV near patient surface

PTV near patient surface

Large density differences in target areas

- Re-irradiation H&N cancer patient
- Danger of suboptimal beam fluence
- Hiding warnings of skin/density change boosts

Autoplan with density overwrite

Large density differences in target areas

- Autoplan struggle with large density changes
 - Many pencil beam iteration
 - Difference between Collapsed-Cone and pencil beam calculation

Clinical plan

EUROPEAN SOCIETY FOR RADIOTHERAPY & ONCOLOGY

Autoplan

Overlapping PTVs with OAR

Geometric separation

Overlapping PTVs with OAR

- PTV minimum 56.4 Gy (95% of prescription)
- Brainstem maximum 54 Gy
- PTV in brain stem minimum 51.3 Gy maximum 54 Gy

Autoplan no post optimisation

Conformity around stereotactic targets

- Target doses with high homogeneity
- High conformity not easy
- No constraints close to target

SRS brain metastasis patient

SBRT lung cancer patient

Multi center Autoplan study

The Netherlands Cancer Institute, The Netherlands Liverpool and Macarthur Cancer Therapy Centres, Australia Odense University Hospital, Denmark

Study setup

- Three local protocols
- Create Autoplan techniques
- Test on 3 pilot patients
- Validate on 10 patients

Conclusion

Techniques are adaptable • to multiple prostate radiotherapy protocols

Challenges using Autoplan

- Target in air or near surface
- Large density differences in target ath
- Overlapping PTVs with OAR
- Conformity challenges for stereotact
- Using Autoplans across many center

• User knowledge of the Autoplanning process EUROPEAN SOCIETY FOR RADIOTHERAPY & ONCOLOGY

How to implement AP in a new center

- Defined protocols
 - > Target
 - OAR threshold limits
 - Priority target/OAR's
- Replan group of patients
- Configure Autoplan according to protocol hours
- Reconfigure for specific needs:
 - Overlapping targets and OAR
 - Priorities between competing OAR
- Validate on separate patient group

- Check deliverability of plans
- Estimated time required 50
 hours

Conclusion

- Autoplan create plans of high and often better quality than manual plans
- Reduces doses to OAR
- Removes inter planner variability
- The implementation is relatively easy
- Mind the pitfalls of Autoplan

Thank you for your attention

Science in development 26-27 October 2018 Malaga, Spain

REGISTRATION OPENS Early May 2018

DEADLINES Contributions on ongoing research: 27 June 2018 Early registration: 21 August 2018

Late registration: 20 October 2018

No onsite registration.

optimal care, together

ESTRO 38

26-30 April 2019

Milan, Italy

DEADLINES

Abstract submission: 22 October 2018

Early registration: 16 January 2019

Late registration: 26 March 2019

WWW.ESTRO.ORG

