BEYOND THE FUTURE SO^{TT} ANNUAL MEETING & EXHIBITION (MASHVILLE)

Technology and Clinical Implementation of 4π Radiotherapy:

KE SHENG, PH.D., DABR, FAAPM UNIVERSITY OF CALIFORNIA. LOS ANGEL

Disclosure

I receive research grants from Varian Medical Systems and VisionRI

I am a founder of Celestial Medical Inc.

Funding source: NIH R21EB025269 NIH U19A1067769 NIH R43CA183390 DE-SC0017057 DE-SC0017057 NIH R01CA188300

Outline

Radiation Oncology

- Technical development
- Clinical implementation
- Future directions

slation UCLA

gantry

Gradient of f
$f(x) = \frac{1}{2} \ (\ell - A_0 x)_+\ _2^2 + \sum_{i=0}^N \frac{\alpha_i}{2} \ (A_i x - d_i)_+\ _2^2 + \frac{\beta_i}{2} \ A_i x\ _2^2 + \gamma \ Dx\ _1^{(\mu)}$
$\nabla f(x) = -A_0^T (\ell - A_0 x)_+ + \sum_{i=0}^N \alpha_i A_i^T (A_i x - d_i)_+ + \beta_i A_i^T A_i x + \frac{\gamma}{\mu} D^T P_{[-\mu,\mu]}(Dx).$
() Connor et al. RVB 2018 61)(4)
Radiation Oncology Technology, Innovation and Clinical Translation UCLA

,		

3D optical surface acquisition

- Two pairs of wall-mounted 3D stered cameras in CT simulation room
 Low-pass filters to reduce sensitivity t lighting

- Surface accuracy verified by scanning cubical phantom 2mm discrepancy Patient and phantom surfaces acquired immediately after CT simulation to ensure consistent setup

Case-specific collision maps

Radiation Oncology Technology, Innovation and Clinical Translation

-

Future development of 4π radiotherapy

- 4π VMAT
- $\,\cdot\,$ Fully automated evolving knowledge base (EKB) 4π treatment planning and delivery

4π VMAT

Radiation Oncology

- + 4π VMAT is a way to further accelerate 4π IMRT
- A simple way to create non-coplanar VMAT is by generating static beams first and then connect them with arcs
- However, these arcs are not dosimetrically desirable.
- Need to include arc trajectory selection in optimization

4π VMAT radiotherapy: cost function

$$\begin{split} & \begin{aligned} & \min trainer \\ & \min trainer \\ & \left\{ f_{hac} r_{hac} t_{hac} t_{hac} t_{hac} t_{hac} t_{hac} f_{hac} t_{hac} t_{hac}$$

group sparsity term aperture continuity term aperture continuity term and beam trajectory optimization Lyw cai JNW 2018 THAB and beam trajectory optimization Lyw cai JNW 2018

ology, Innovation and Clinical Translation UCLA

-

-

PQM Results	5	
		Find EKB artHQ Cln VMAT Man 4r mag 20.48 50.08 41.22 57.72 IN 64.50 66.31 53.78 63.49
Fully automated EKB 4π p		kans et al. AAPM 2018 MO-AB-KDBRA1-3
Radiation Oncology	Fechnology, Innovation and Clinicc	al Translation UCLA

Conclusion

- 4π radiotherapy optimally uses the enhanced beam geometry freedom to create highly compact dose distribution.
- The path to overcoming the computational challenge of 4π IMRT and VMAT treatment planning has been elucidated.
- \bullet The feasibility of delivering optimized 4π treatment has been shown in an early phase clinical trial.
- Extending 4π to extracranial sites may be calling for a new hardware architecture.

Radiation Oncology Technology, Innovation and Clinical Translation

