Quantitative Inaccuracy in PET/MRI: Is It Real and When Does it Matter

1. "Clinical" use of PET

2. Potential roles for PET

3. Harmonization

4. Approaches in PET/MRI

1. "Clinical" use of PET

2. Potential roles for PET

- 3. Harmonization
- 4. Approaches in PET/MRI

Newly diagnosed T3B N2 rectal cancer

Recurrence in bladder wall

Detection vs Characterization

Characterization

Can be broken down into two parts: characterizing response and current state of disease Often times does not depend on quantitative accuracy (are the tumors receptor positive) Response does depend on quantitative accuracy

Response criteria				
RECIST	PERCIST			
CR Disappearance of all target lesions. Any pathological lymph nodes (target or non-target) must have reduction in short axis to <10 mm.	Complete resolution of 18F-FDG uptake within measurable target lesion so that it is less than mean liver activity and			
At least a 30% decrease in the sum of diameters of target lesions, taking as reference the baseline	indistinguishable from surrounding background blood-pool levels.			
sum diameters. Neither sufficient shrinkage to qualify for PR nor sufficient increase to qualify for PD, taking as reference the smallest sum diameters while on	PMR Reduction of minimum of 30% in target measurable tumor 18F-FDG SUL peak. Absolute drop in SUL must be at least 0.8 SUL units			
At least a 20% increase in the sum of diameters of	SMD Not CMR, PMR, or PMD. SUL peak in metabolic target lesion should be recorded			
PD target lesions, taking as reference the smallest sum on study (this includes the baseline sum if that is the smallest on study). In addition to the relative increase of 20%, the sum must demonstrate an increase of at least 5 mm.	PMD > 30% increase in 18F-FDG SUL peak, with .0.8 SUL unit, increase in tumor SUV peak from baseline scan in pattern typical of tumor and not of infection/treatment effect.			

4

The majority of clinical uses for PET does not depend on quantitative accuracy

1. "Clinical" use of PET

2. Potential roles for PET

3. Harmonization

4. Approaches in PET/MRI

Potential for combination MRI+PET biomarkers

Complete Response after Neoadjuvant Therapy in Rectal Cancer: To Operate or Not to Operate?

Georgia Dedemadi Steven D. Wexner Orwland Chric Florida, Westan, Fle., USA

Why is it important to predict therapy response?

- Both radiation therapy and total mesorectal exenteration are associated with significant side effects
- In South America, there are large series of patients with "cCR" or a complete clinical response after chemoradiation
- -in this cohort patients have demonstrated good five-year disease free survival and overall survival
- -cCR was based on endoscopic evaluation
- $\ensuremath{\cdot}$ If we can predict response, we can withhold surgery or therapy

The key is an accurate biomarker of response

PROPSECT trial (N1048 protocol)

68M with a PSA of 19 and 4+3 disease

Changing prostatectomy population

In PET/MRI, where the combination of PET and MRI biomarkers are being proposed, quantitative accuracy will be critical

1. "Clinical" use of PET

2. Potential roles for PET

3. Harmonization

4. Approaches in PET/MRI

PET "Harmonization"

- Harmonzation refers to adjusting reconstruction parameters on PET scanners in order to obtain the same quantitative result when imaging a known quantity
- -Standardization refers to uniform processes and procedures
- SUV: standardized uptake value, typically represents a percent uptake of the injected radiotracer in an quantity of tissue adjusted by the patient's body weight

Courtesy of Richard Laforest

Causes for variability in PET/MRI

- <u>Biological</u>: blood glucose level, uptake time, patient motion (breathing or else)
- <u>Technical</u>: scanner absolute calibration, cross calibration of PET scanner to local dose calibrator, clock synchronization,...
- <u>Physical</u>: Scanner geometry, image reconstruction parameters, data acquisition and data correction (attenuation, scatter), data analysis methodology

Courtesy of Richard Laforest

QIBA FDG PET profile

- Addresses "acquisition, reconstruction and post-processing, analysis and interpretation as steps in a pipeline that transforms data to information to knowledge"
- Goal is to have a within subject coefficient of variation of less than 12%
 Increase in SUVmax of 39% or more, or a decrease of -28% or more, indicates that a true change has occurred with 95% confidence
- Defines protocols for patient preparation, injection, scan acquisition, PET reconstruction, image analysis etc.
- There is also similar EANM/EARL protocols

Aide EJNMMI 2017; qibawiki.rsna.org

1. "Clinical" use of PET
2. Potential roles for PET
3. Harmonization
4. Approaches in PET/MRI

Harmonization is possible between the two available PET/MRI scanners

but...

ZTE based MRAC for florbetapir

PET quantification errors in PET/MRI are spatially dependent

PET/MRI phantom

Requirements:

- –Needs to have density and T1/T2/T2* values that mimic human tissue
- -Preferably anthropomorphic in the era of machine learning
- -Needs to be stable over time

Questions:

- -Does it need to have hot spheres?
- -Can we split evaluation between two phantoms?
- -Are MRAC issues generalizable across scanners?
- Can a lesion insertion tool answer this question?

Summary

1. Clinical use of PET imaging, frequently does not depend on quantitative accuracy

2. Due to attenuation correction issues, PET/MRI has spatial quantitative biases (it is real!)

3. Approaches to harmonizing and qualifying PET/MRI scanners do not exist limiting roles in clinical trials

Thank you!

thomas.hope@ucsf.edu

Squamous cell carcinoma of the lip: restaging

19

PET/MRI: Evaluation of hepatic metastasis

Eovist, hepatobiliary phase

15 minute dedicated liver acquisition