QC Considerations for Mobile Devices

Alisa Walz-Flannigan, PhD (DABR)
Mayo Clinic, Rochester, Minnesota
AAPM Annual Meeting
July 30, 2018

No disclosures.

Any commercial products referenced in this talk should not be construed as an endorsement of those products.

Outline
• TG260 charge and scope
• Mobile Image viewing use cases
• Overview of mobile display technology
 • Differences and similarities between image viewing with mobile devices and standard fixed displays
• Calibration and QC approaches for mobile device displays
Legal Notice: This document is a work of the U.S. government and is not protected by U.S. copyright. It is available for public use as part of the National Library of Medicine's mission to collect, preserve, and make available the world's biomedical literature. The National Library of Medicine makes no warranty, express or implied, including warranties of merchantability or fitness for a particular purpose, nor assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. The U.S. government does not endorse any commercial product or process described in this document.
TG260 Scope

> Provide users in healthcare imaging with an understanding of considerations for use in patient care
> Provide examples of potential use cases, review current technological offerings, and highlight procedures to promote best practices in the use of handhelds.

"Handheld image viewers are practical and widespread. Understanding the limitations of their use and knowing when and how to use them is paramount to high-quality patient care delivery." [TG260]

Use cases for mobile viewing of medical images in radiology

• Viewing an examination that is currently in progress
• Consulting with a trainee
• Offer opinion to emergency interventionalists.
• Real-time, in-person or remote consultation with other providers (e.g., surgical planning).
• Communicating imaging findings to patients, for teaching
• Tele-presence applications

Mobile Viewers generally sold as adjuncts to a full-radiology workstations and for clinical review and communication
Studies show diagnostic concordance of mobile devices with fixed PACS workstations

De Maio et al. [14] analyzed the accuracy of mobile diagnostics related to intra-articular knee pathology

Park et al. [15] examined the potential of the iPad 2 as a teleradiology tool for evaluating brain CT scans with subtle hemorrhage

Schlechtweg et al. [16] investigated one hundred patients with a clinical suspicion of abdominopelvic hemorrhage. The results showed that this type of exam can be diagnosed on a tablet computer with a high diagnostic accuracy allowing mobile on-call diagnoses.

From Venson et al. International Journal of Medical Informatics 113 (2018) 1-8

Other Perspectives

"Mobile devices are currently not recommended as tools for primary interpretation of radiologic studies."
European Society of Radiology (2018)

Standard tied to function. Device agnostic. Could mobile meet the standard?

Workstation Display vs Handhelds

What all is the same?
What is different?
What should we be aware of?
Major considerations for the use of handheld image viewers

- Image size and resolution
- Variable viewing angle and viewing distance
- Motion
- Calibration
- Variable ambient illumination
- Touch
- Connectivity
- Compression

From TG 260 Draft (2018), Badano et al.

Overview of Mobile Display Technology

Overview of Mobile Display Technology

Display Comparisons

A large, handheld, 10-inch diagonal 3MP display, held at 30 cm
gives an equivalent visual experience as a 20-inch medical monitor at
twice the distance.

<table>
<thead>
<tr>
<th>Device</th>
<th>Native resolution (pixels)</th>
<th>Display size (cm)</th>
<th>Pixel size (mm)</th>
<th>Typical Viewing distance (cm)</th>
<th>Limiting resolution in cycles per degree for typical viewing distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PACS doctor</td>
<td>2048 x 1536</td>
</tr>
<tr>
<td>iPhone 8</td>
<td>1134 x 750</td>
</tr>
<tr>
<td>Samsung Galaxy S</td>
<td>1334 x 750</td>
</tr>
<tr>
<td>iPad pro 10.5</td>
<td>2224 x 1440</td>
</tr>
<tr>
<td>Galaxy Tab S3</td>
<td>2048 x 1536</td>
</tr>
</tbody>
</table>

Perceived resolution for a given pixel size depends on viewing distance

Visual contrast sensitivity (at 100 cd/m²) is less than 10% of max at 28.4 cpd
For lower luminance or higher spatial frequencies, contrast sensitivity is lower.

Intrinsic Display Performance

- Spatial resolution
- Luminance ratio
- Noise

Can be as good or better than desktop monitors

[Yamazaki et al., PLOS ONE 2013]
Factors that can affect perceived display resolution

- Pixel structure
- Luminance
- Color
- Image rendering for display matrix
- Viewing Distance
- Panel reflections
- Panel protectors
- Viewing angle
- Motion

Matters of size

Matter of workflow efficiency

Matter of availability and timeliness

Major considerations for the use of handheld image viewers

- Image size and resolution
- Variable viewing angle and viewing distance
- Motion
- Calibration
- Variable ambient illumination
- Touch
- Connectivity
- Compression

Resolution: can be as good or better, but different with affect of motion, screen protectors, higher variability in viewing angles and distance, and panel types.
DEMO TIME
BYOD (bring your own device: smartphone or tablet)
not unlike current clinical situations

DEMO TIME: grab an app

For Apple product users:
download mobile MIM

Android users:
Find a friend to look on with
Browse for apps with demo functions

Demo screen shots will also be shown

DEMO TIME: grab an app from the store

Used for educational purposes with permission from MIM
1. Can you see the two half-moons in each square?
 • If not all, which are not seen?

2. If all half-moons are seen, can you see the four squares in the corners?
 • If not all, which are not seen?

DEMO TIME

How is your viewing?
DEMO TIME:

- Go out of the application
- Maximize your display brightness

DEMO TIME:

- Too Much Ambient Light?
- Device Not Calibrated?

DEMO TIME

- Verify Lighting
- Calibration
- Annotate
- Measure
- Cancel
1. Can you see the two half-moons in each square?
 • If not all, which are not seen?
2. If all half-moons are seen, can you see the four squares in the corners?
 • Which?
 • Or, if not all, which are not seen?

Variable Ambient Illumination

Ambient illumination is more significant concern for handhelds

• Handhelds often have higher reflectance than reading room displays. [Liu and Badano, JDI 2013], can be made worse with panel protectors, especially the specular reflectance.
• Handhelds are used in variable lighting environments.
• Evaluation of the environment is crucial.
• The impact of ambient light while reading patient image can be difficult to assess, as one cannot notice what one does not see.

Major considerations for the use of handheld image viewers

• Image size and Resolution
• Variable viewing angle and viewing distance
• Motion
• Calibration
• Variable ambient illumination
• Touch
• Connectivity
• Compression

Calibration: typical calibration sRGB color and not conforming to DICOM GSDF. Variable user brightness settings. Variable ambient illumination can affect contrast resolution. End user calibration is app dependent and unless using external measurement is not DICOM GSDF.
Major considerations for the use of handheld image viewers

- Image size and Resolution
- Variable viewing angle and viewing distance
- Motion
- Calibration
- Variable ambient illumination
- Touch
- Connectivity
- Compression
- Security

Infrastructure and settings considerations for both app and implementation:
- Institutional wifi only/cellular?
- Data rate requirement for use?
- Restricted compression?

Calibration approaches
(as accommodated by the application)

1. End-user calibration (as in the demo)
 - User-tailored for their eyesight
 - Accommodates current ambient lighting when performed
 - Not DICOM GSDF
 - Time consuming and could make things worse if not done well

2. Initial device panel characterization and DICOM GSDF conforming LUT created for a reasonable ambient illumination.
 - Should be stable over typical device lifetime
 - Can be modified for varying ambient conditions (within limits)

Thoughts on Calibration Approach

- One and done approach alleviates burdens for end user.
 - handheld paradigm is all about timely ease of access
- Operating system access to color management would allow for ease GSDF calibration for multiple apps.
QC Approaches

• Test of Calibration
 • Confirmation of initial calibration by professional
 • End-user visual test of calibration
• Ongoing end-user testing for changes related to viewing conditions
 • Clean screen
 • Lighting check

QC Approaches: end-user testing

Low contrast visibility test

• User has to score a test pattern
• User needs special information to conduct
• User must determine their threshold

More burdensome for user

• Forced choice
• Simple and quick
• Doesn’t require special information

Less burdensome for user

QC Approaches: end-user testing

Testing Trigger

1. Voluntary access when a user is concerned for IQ
 • Found in a settings menu somewhere (typical of current mobile viewers if provided)
2. Prompted access in response to triggering circumstance
 Possibilities:
 • Before viewing exam that is “in progress”
 • When opening an application
 • When camera senses significant deviation from calibration conditions
 • Logged override
Summary

- Standards for diagnostic viewing are device agnostic
- Mobile devices could (in principle) be set up to conform to standards
- Platform differences suggest different use cases and strategies for calibration and quality control

Questions & Discussion