Diffusion MRI

Xiaohong Joe Zhou, PhD, DABR
University of Illinois at Chicago
Chicago, Illinois

Advanced MRI in the Clinic

Learning Objectives

- To understand commonly-used diffusion MRI pulse sequences in the clinic;
- To understand the common diffusion models in diffusion MRI analysis;
- To be able to implement diffusion imaging protocols and conduct quality assurance.

Outline

- Diffusion MRI signals
- Diffusion models and protocols
- Examples of clinical applications
- Quality assurance

Diffusion-Weighted Imaging

\[S = S_0 \exp(-bD) \]

\(b \): b-factor
\(D \): diffusion coefficient

Diffusion Gradient in a Spin Echo Sequence

- Stejskal and Tanner gradient

\[b \approx \gamma^2 G^2 \delta^2 \left(\Delta - \delta/3 \right) \]

The sequence is extremely sensitive to motion.

Acquired using a single-shot EPI pulse sequence at 3T

DWI Using Single-Shot EPI in the Abdomen

Single-Shot EPI for Diffusion Imaging

- **Pros**
 - Motion resilient
 - Low SAR
 - Time efficient

- **Cons**
 - Image distortion (sensitivity to off-resonance)
 - Low spatial resolution
 - Sensitivity to eddy currents

Multi-shot EPI diffusion

- Higher resolution (e.g., 256^2)
- Less distortion
- Reduced sensitivity to eddy currents
- Less ghosting
- Slower
- Motion correction is needed (MUSE, RESOLVE, etc.)
- Residual motion artifacts

PROPELLER/BLADE/Multi-VANE Diffusion

- Very robust against motion
- Distortion free
- Relatively slow

ADC vs. Cellularity

Clinical Demonstration on Patients

- Jiang; BJR 2016 (Breast cancer)
- Chen; PlosONE 2014 (Lung cancer)
- Kishimoto; Acta Radiol 2016 (Endometrial cancer)

Average \(r = -0.61 \)

Logarithm of Relative Signal Intensity

\[
\text{Log} \left(\frac{S}{S_0} \right) = S_0 \exp(-bD)
\]

\(D \): apparent diffusion coefficient (ADC)

Gaussian Diffusion (monoexponential model) → Cellularity

b-value (s/mm^2)

- 0 ~ 200
- 200 ~ 1,500
- 1,500 ~ 4,000
- 4,000 ~ 8,000

ADC maps

Pipe et al., MRM 47: 42-52, 2002

b = 1000 s/mm^2

128x128

~1 min/image
IVIM Diffusion Imaging

\[
\frac{S}{S_0} = f \exp(-bD^*) + (1-f)\exp(-bD)
\]

Perfusion fraction (f); pseudo-diffusion coefficient (D*); diffusion coefficient (D).

- Note that D << D*
- D* mimics perfusion, but is not perfusion.
- 3-8 b-values are typically used.

IVIM: Differentiation between Malignant and Benign Mediastinal Lymph Nodes (MLN)

<table>
<thead>
<tr>
<th>8 b-values (0-1000 s/mm²)</th>
<th>Benign</th>
<th>Malignant</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVIM D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVIM D*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVIM f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADC (mm²/sec)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diffusion “b-Spectrum”

- Gaussian parameters can complement ADC.

Diffusion Models

- **Gaussian**
 - Mono-exponential
 - ADC
 - FA, MD, RD, AD, eigen-vectors, etc.

- **Non-Gaussian**
 - Compartmentalized models
 - IVIM, NODDI, AxCaliber, Charmed, RSI, VERDICT, etc.
 - Non-compartmentalized models
 - DSI, q-Ball, DTI, DKG, stretch exponential, fractal, CTRW, PRCO, FM, etc.
Fractional Order Calculus (FROC) Model

\[M_T = M_0 \exp\left(-D r^{2\beta-1/2}\left(\mu - \frac{2\beta - 1}{2\beta + 1}\right)\right) \]

- \(D \): Diffusion coefficient, similar to ADC
- \(\beta \): Degree of intravoxel tissue heterogeneity
- \(\mu \): Spatial quantity, related to the diffusion mean free length

Example of Grading Pediatric Brain Tumors

Diffusion Tensor Imaging

- Applying the diffusion gradient in \(\geq 6 \) directions
- Analyzing the signals using a diffusion tensor
- Fractional anisotropy (FA)
- Mean diffusivity (MD)
- Principal eigen-vector \(\rightarrow \) tractography

DTI for Pre-Surgical Planning

Tissue Heterogeneity

0 1 (Gaussian)

Low-grade High-grade

D \(\beta \) \(\mu \) T2

Ependymoma PA PA Medulloblastoma

AT/RT

Quality Assurance for DWI

- Image distortion
 - Use a spherical phantom
 - Check the distortion wrt the image with \(b=0 \)
 - Eddy currents (time constants \(\approx 50 -100 \) ms)
- EPI-related image quality
 - Ghosting level (< 3%)
 - SNR
- ADC accuracy
 - Use a standard water phantom at a fixed temperature
 - Check ADC value of the water phantom quarterly

Conclusions

- DWI is typically acquired using a single-shot EPI pulse sequence.
- \(b \)-Value determines the degree of diffusion weighting, and probes the different tissue structural information.
- ADC is the most prevalent parameter used clinically.