

Perfusion MRI

Youngkyoo Jung, PhD Associate Professor Radiology, Biomedical Engineering, and Clinical & Translational Science Institute

Perfusion

- The delivery of blood to a capillary bed in tissue
- Perfusion parameters
 - Blood flow: the rate at which blood is delivered to tissue in ml/100g/min
 - Blood volume: the volume of blood per unit tissue mass in ml/100g
 - Mean transit time: the average time a tracer residing within the system in sec.
 - Vessel permeability: the transfer of a tracer from intravascular space

to extravascular-extracellular space

- Clinical relevance
 - hyper/hypo metabolism & ischemia: blood flow
 - abnormal vascularization (i.e. angiogenesis): blood volume, mean transit time, time-to-peak
 - BBB breakdown: vessel permeability

MRI Method

- Endogenous contrast (blood)
 - Freely diffusible including interior of cells
 - Arterial Spin Labeling (ASL) MRI
- Gd-based contrast agent
 - Gadolinium: paramagnetic element causing T2/T2*/T1 shortening
 - Extracellular tracer: passing through vessel walls but not in the brain due to blood brain barrier
 - Dynamic Susceptibility Contrast (DSC) MRI
 - Dynamic Contrast Enhanced (DCE) MRI

- A method for measuring blood flow
- Blood signal inverted in tag but not in control
- ASL signal from subtraction of tag/control

Masked CBF [ml/100g/min] (Whole brain=49.73) (Scan time=4m 20s)

Pulsed ASL

Continuous ASL or
Pseudo-continuous ASL

- Quantification into Blood Flow
 - Assume the entire labeled signal delivered to tissue
 - Estimate blood magnetization (*M*_{0blood}) from a reference signal (tissue or CSF)

• CASL or PCASL

 Δ M = perfusion weighted signal (control – tag), α = tagging efficiency, T1_{blood} ≈ 1.66s @3T

Wake Forest School of Medicine

PASL

• How long to wait?

Transit delay effect!

Kinetic Model

 $C_{T}(t) = R(t) \otimes C_{A}(t)$

 $CBF \propto F \text{ (by deconvolution)}$ $CBV = \int_0^\infty C_T(t) dt / \int_0^\infty C_A(t) dt$ MTT = CBV/CBF or $\int_0^\infty R(t) dt$

- T2/T2* effect at first passage
- A series of T2/T2* weighted images
 - T2*: 2D GRE EPI w/ ~50ms TE @ 1.5T & ~1.5sec TR)
 - T2: 2D SE EPI w/ ~70ms TE @ 1.5T & ~1.5sec TR)

- Analysis of the dynamic curve per voxel
 - Conversion into $\Delta R2^*$ signal ([Gd] $\propto \Delta R2^*$)
 - Finding AIF
 - Calculation of CBF, MTT, & CBV

Wake Forest School of Medicine

Blood Flow

Mean Transit Tim

Blood Volume

Contrast Agent Leakage

Leakage correction or preload is required!

Dynamic Contrast Enhanced (DCE)

Contrast Agent Leakage

$$R(t) = K^{trans} e^{-\frac{K^{trans}}{V_e}t}$$

Tofts model

Wake Forest School of Medicine

Dynamic Contrast Enhanced (DCE)

Contrast Agent Leakage

 $C_T(t) = R(t) \otimes C_A(t) + v_p C_A(t)$

$$R(t) = K^{trans} e^{-\frac{K^{trans}}{V_e}t}$$

Extended Tofts model

Dynamic Contrast Enhanced (DCE)

- T1 weighted, longer response.
- A series of T1 weighted images (3D SPGR w/ short TE, short TR, 15~30^o flip angle, ~5 sec temporal resolution, ~5 min scan time)

Dynamic Contrast Enhanced (DCE)

- Analysis of the dynamic curve per voxel
 - Conversion of signal into [Gd]

([Gd] $\propto \Delta R1$, T1w Signal = $M_0 \frac{\sin \alpha (1 - e^{-TR R_1})}{(1 - \cos \alpha e^{-TR R_1})}$) \rightarrow tissue T1 map or assumed value

- Finding AIF
- Calculation of K^{trans} , V_e , V_p , k_{ep} (= K^{trans}/V_e)
- K^{trans} related to permeability, surface area & flow

Summary

	ASL	DSC	DCE
GBCA	Х	0	0
Contrast	Blood T1	T2/T2*	T1
Sequence	PASL or PCASL	T2w SE or T2*w GRE	T1w SPGR
Parameters	CBF	CBF, CBV, MTT	K^{trans} , k_{ep} , V_{p} , V_{e}
Pros	Repeatable, Ease of quantification	Short scan time, Large signal change	Evaluation of Tumor
Cons	Transit delay effect Low spatial resolution	Low spatial resolution Susceptibility artifact	Complexity of model