

Conflict of interest disclosure

Outline

- Advantages and disadvantages of dual-layer DECT
- St. Jude clinical implementation experience
- General RT and proton-specific applications
- Reducing proton range uncertainty with DECT
- Phantom and animal tissue experiments
- Future outlook

S. A.L

L

Dual-layer CT is a special type of dual-energy CT

What can be obtained with a single acquisition?

Advantages and disadvantages of dual-layer DECT

- Simultaneous acquisition (better immunity to motion)
- No changes to conventional work flow
- Up to 50 cm FOV vs. 35-50 cm (pitch dependent) in dual-source approaches
- Angular mA modulation possible during gantry rotation (challenging for fast kVp switching)
- Material decomposition on projection space
- Spectral separation not as large as one from dual sources (80/140kVp)
 Vendor emphasized the high energy tail of the low energy spectrum actually improves the noise.
 End results (accuracy of spectral images) also depend on model based reconstruction.
- One more layer scintillator increases the complexity of read out electronics and the detector cost (vendor decision to first roll out 4cm detector width).

2

2

IQon spectral CT at St. Jude Radiation Oncology

Installed at St. Jude Radiation Oncology in 2016
>400 patients scanned since then

2

2

ator QA

- 4 cm Z coverage, 0.27s rotation time
 50 cm FOV for conventional and spectral images
- NEMA XR-29 (dose optimization) compliance
- Iterative reconstruction (iDose4 and iMR) for conventional polychromatic images
 Metal artifact reduction (OMAR) reconstruction
- Single acquisition at 120 or 140 kVp to reconstruct both polychromatic and monoenergetic images

Acceptance testing

Transmission Print, Print, Street, Str	Company of the spectra of the local second of the log	The second lines	the second second second
Constant of the local division of the local	· ····································	α	No.
0	121,122		121
_			100 million (10
- 0.07	the later of the l		Compression and inside

Applications of DECT in RT (incl. proton therapy)

- 2 auto
- Reducing proton range uncertainty by better estimating the tissue properties along the beam path
- Improved Monte Carlo simulation accuracy of brachytherapy, photon, and proton therapy
 Better visualization of tumor and vessels and feasibility of reducing contrast doses (by viewing low keV monot images)
- Improve image quality (
 beam hardening and metal artifacts) for tumor delineation (monoE images)
- Virtual contrast removal for treatment planning (VNC)
- Quantitative assessment of normal tissue function before and after RT (e.g. lungs, bone marrow)
- Improved tumor characterization and tissue segmentation (e.g. bone and marrow extraction, anatomical structures) and response assessment (iodine uptake, spectral HU curves)

_

2

Process of generating ED and Zeff with dual-layer DECT

Proton range uncertainty

	Trends		1.1.0.1
NAME OF COLUMN	1000	iner-11	- Beerl
Contract of the state of the	11	2	#
Second Contract of the second	-	12	12
	#	#	#
100-100-00-000		1.0	

2

2 Direct use of electron density for photon treatment planning

nventional: map HU to ED via the stoichiometric calibration curve ew: Directly calculate ED for planning Note the difference in dose distributions near right cochlea

DECT for reducing proton range uncertainty

2

In 2010, DECT was proposed for reducing SPR uncertainty by directly calculating ED and Zeff images, rather than relying on the calibration curve to map HU to SPR.

DECT for reducing proton range uncertainty

A recent comprehensive uncertainty analysis using DECT by Li and Yang et al (2017 PMB) concluded the overall range uncertainty is approximately 2.2% (2 σ) in clinical scenarios, in contrast to previously reported 1%.

Conclusion was reached based on acquiring two separate scans with dual-source CT and using an image-based approach (as opposed to projection based) to derive ED and Zeff images.

Image-based method for SPR estimation could be sensitive to image noise and beam hardening effect.

			- 2	1	
-			77	10	1
NOT INCOME.	iteration in the second		14	14	14
MUT Month in		i	100	1	11
tering in pair and		1.0000.000			
540 BTD.				11	
teast in forces	-		- 14	11	
teast drive	75:55		14	11	
test Bit:	12:53	ti di segerat se Kanan Rama	-		
Tana in forces	72:22	n - 1 - marek - 1 Tana Kana Kana	Ē	11	

First				Phantom or		
author	Institution	Journal	Year	tissues	DECT system	Major findings
		Z Med		Animal tissues		[Tissues] WET deviation reduced from -2.1% (SECT) to 0.3%
Hünemohr	DKFZ (Germany)	Phys	2013	(Pig head)	Siemens Definition Flash	(DECT)
					Siemens AS64 (SECT, dual spiral), Siemens Flash and	
Taasti	(Denmark)	PMB	2018	Animal tissues	Siemens Edge (twin heam)	(1issues) RMSE on SPR= 2.8% (SECT), 1.5% (twin beam), 1.4% (dual spiral) 1% (dual spurce)
						[Phantom] RMSE on SPR reduced from 1.59% (SECT) to 0.61% (DECT)
Bär	National Phys lab (UK)	Med Phys	2018	Phantom Animal tissues	Siemens Somatom Flash	[Tissues] Bias and standard deviation in WER error both reduced from SECT to DECT
						Mean absolute error of 65 tissue samples reduced from
Möhler	DKFZ (Germany)	PMB	2018	Animal tissues	Siemens Definition Flash	1.27% to 0.10% for carbon ion beam
ыл.				Phantom		[Tissues] Bias reduced from 0.55% (SECT) to 0.07% (DECT). Standard deviation reduced from 1.94% (SECT) to 0.58%
xie	U Penn (USA)	PIMB	2018	Animai tissues	Siemens Sensation Open	(DECT)
Zhu	St Jude (USA)	AAPM	2018	Phantom	Philips IQon	[Phantom] RMSE on SPR reduced from 2.18% (SECT) to 0.83% (DECT)
						Complied for 2018 AAPM DECT for RT session

Summary and future outlook

L

- Dual-layer CT an attractive option for dual-energy imaging
 - Large FOV (50cm), same imaging workflow, no dose penalty, high accuracy of ED, Zeff, and SPR
 Used for CT simulation in a RT department
- Tissue validation and comprehensive uncertainty analysis are underway to replace current 3-3.5% uncertainty Phantom studies and animal tissue validations for proton therapy
 - Improvements demonstrated over SECT

 - Mostly focused on dual-source or sequential scans on motionless tissues
 Dosimetric benefits and normal tissue sparing on patients yet to be estimated
 Other sources of uncertainty (e.g. I-values of tissues) need to be reduced
- Outlook
 - Vendors developing/releasing TPS features to support DECT for planning and dose calculation 0
 - Anticipate more DECT installations in RT departments (especially proton therapy centers)
 Clinical translation to proton patients in the next few years

Acknowledgment

Philips Healthcare Paul Klahr Yoad Yagil Nadav Shapira Oliver Steinbach Natalie Scully Preeti Deka

