

<text><list-item><list-item><list-item><list-item>

III Washington University School of Medicine in St. Louis

Terminology

- Plan Characteristics
 - 9 MeV electron beam
 - Rx: 800 cGy to 90% IDL
 - Goal: Spare healthy brain tissue
- Bolus Characteristics:
 - Distal bolus surface conforms to patient surface
 - Proximal surface shapes dose distribution.

🐺 Washington University School of Medicine in St.Louis

- I. Fundamentals of Bolus Electron Conformal Therapy
- II. Bolus Electron Conformal Therapy Clinical Workflow
 - Simulations
 - Treatment Planning/Ordering
 - Treatment Delivery

III.Clinical Cases: Nose, Back, Foot

IV.Future – Potential for Intensity Modulation

III Washington University School of Medicine in St. Louis

General Clinical Workflow

- Patient consult (Ideally includes physicist for evaluation)
- Initial CT simulation (Day 1)
- Initial treatment planning (Day 2 5)
 - Multi-modality fusions
 - Contour creation
 - Beam selection
 - Virtual bolus creation
- Bolus fabrication and shipping (Day 5 7)
- Verification simulation (Day 8)
- Final treatment planning (Day 8 10)
- First treatment fraction (Day 10)

🐺 Washington University School of Medicine in St. Louis

Department of Radiation Oncology Division of Medical Physics

Initial Patient CT Simulation (Day 1)

Patient setup

- Physician present to delineate treatment volume
 - Typically wires skin
- · Oriented to maximize bolus stability
 - Gantry angle close to AP (0° ± 20°)
- Consider and minimize possible collision of patient anatomy with applicator
 - Shoulder issues when treating neck
 - Couch table when treating extremities

🐺 Washington University School of Medicine in St. Louis

nent of Radiation Oncology Division of Medical Physics

Verification Simulation (Day 8)

- QA for bolus treatment
- Examine bolus for defects
- Reduce sharp edges if needed
 - Only on patient side
 - Typically no alteration needed
- Prepare bolus for simulation
 - Add BBs on unmilled surface
- Useful printouts
 - 3D rendering of patient
 - Bolus in multiple orientations
 - Multiple axial slices with bolus

IVashington University School of Medicine in St. Louis

Verification Simulat	tion (Day 8)
----------------------	--------------

- Scan patient
 - Use same slice thickness as initial scan
 - Extend 5cm above and below bolus
- Examine bolus fit
 - Use lung window/level
 - Air gaps should be <3mm
 - Reposition and rescan if necessary
- Rarely alter bolus
 - Add red wax bolus to fill in large gaps
 - Bolus thickness for low energy beams

I Washington University School of Medicine in St. Louis

Department of Radiation Oncology Division of Medical Physics

ECT Costs					
 .decimal (Milling) Materials: \$300-\$995 per bolus, depending on size Shipping: Costs based on location and timeframe Software: Currently free for download Hardware: None 	e				
 Adaptiiv (3D printing) Materials: \$5-\$12 per bolus Printing Fee: \$75-\$90 per print Shipping: None Software: Varies as company offers both upfront license and pay as you go Hardware: \$5000 - \$10000 for 3D printer 					
🐯 Washington University School of Medicine in St. Louis	Department of Radiation Oncology Division of Medical Physics				

- I. Fundamentals of Bolus Electron Conformal Therapy
- II. Clinical Workflow
 - Simulations
 - Treatment Planning/Ordering
 - Treatment Delivery

```
III. Clinical Cases: Nose, Back, Foot
```

IV.Future – Potential for Intensity Modulation

IVashington University School of Medicine in St. Louis

Case 2: Back Treatment Plan							
 Treatment 80% using DD and 20 MeV, 20% using not bolus with 16 MeV. Planning goals: 95% of PTV covered by 95% of Rx 							
• RX = 54Gy @ 2 Gy fractions							
• Lung Dmean < 10Gy, V20 < 20%							
• Heart Dmean < 5 Gy, V20 < 5%							
• Mixed bolus with non-bolus to reduce dose							
• 110cm SSD							
Fields Dose Prescription Field Alignments Plan Objectives Optimization Objectives							
Plan ID	Fractionation Id	Dose / Fraction [cGy]	Number of Fractions	Total Dose [cGy]			
rev_16e	F1	1413.5	1	1413.5			
rev_dd	F1	5201.6	1	5201.6	cology		
Washington University School of Medicine in St. Louis							

Case 3: Foot Initial Simulation

- 71 female with 2cm clear cell sarcoma of the right lateral foot
- Conservative local excision with positive margins.
- 2:1 BECT to 6X weighting
 - 95% of PTV covered by 95% Rx
 - 45Gy initial plan in 1.8 Gy fx.
 - PTV retracted 3mm from skin
 - 16 MeV (137MU) used and 6 X (61MU).
 - Mixed to reduce dose to skin, spare foot and ankle joints

🐺 Washington University School of Medicine in St. Louis

Case 3: Foot First Fraction Treatment

- Results: Erythema resolved at time of 6 week follow-up.
- Patient has maintained an active life, retained ability to walk/hike.

IVashington University School of Medicine in St. Louis

Case 4: Face with 3D Printed Bolus

Case Details:

- 67-year-old female with mycosis fungoides of the forehead, eyelid and nose
- 3D modulated bolus resulted in better sparing of all the OARs while providing a similar PTV coverage compared to uniform thickness bolus

\land ADAPTIIV

🐺 Washington University School of Medicine in St. Louis

Department of Radiation Oncology Division of Medical Physics

Case 5: Partial Scalp with 3D Printed Bolus

- Adult patient with mycosis fungoides of the scalp
- Significant reduction of air gaps compared to handmade bolus
- Provided tailoring of the 90% isodose to follow the PTV contour, while limiting dose to the brain

🐺 Washington University School of Medicine in St. Louis

ADAPTIIV

Department of Radiation Oncology Division of Medical Physics

Bolus Electron Conformal Therapy

James Kavanaugh Instructor Campus Box 8224 4921 Parkview Place St. Louis, MO 63110 (218) 260-9940

jkavanaugh@wustl.edu

©2016

I Washington University School of Medicine in St. Louis

Department of Radiation Oncology Division of Medical Physics