Educating Residents in Root Cause Analysis: Why, Why, Why

Eric Ford, PhD, FAAPM
Professor
University of Washington
Seattle, WA

An Interactive Session to Share Education Ideas: How Do You Teach Quality and Safety to Residents?
Disclosures

• R18 HS022204-01
Learning Objectives

• Participate in an interactive forum for the sharing of education ideas
• Adapt techniques shared in this session into your own medical physics residency or graduate program
• Become aware of various techniques for teaching patient safety and quality improvement
State of Safety Training in Residencies (circa 2016)

Survey of residents in therapy programs in North American.

n=56 (of 248, 23%) in physics

<table>
<thead>
<tr>
<th></th>
<th>No exposure or informal</th>
<th>Formal Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experience with incident learning</td>
<td>64%</td>
<td>36%</td>
</tr>
<tr>
<td>Root-cause analysis</td>
<td>77%</td>
<td>23%</td>
</tr>
<tr>
<td>FMEA</td>
<td>72%</td>
<td>27%</td>
</tr>
</tbody>
</table>

Safety training in residency is adequate: 40%

Note: numbers are not much different for MD residents. Maybe you expect this. Would this be acceptable for another core clinical competency such as linac QA or IGRT?
There is a disconnect here. 60% of residents think their program is NOT adequate, 90% of directors think resident are prepared for practice.

Survey of therapy program directors in North American. n=31 (32%) in physics

<table>
<thead>
<tr>
<th></th>
<th>Agree</th>
<th>Do not agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety & QI education is important</td>
<td>95%</td>
<td>5%</td>
</tr>
<tr>
<td>Residents are enthusiastic</td>
<td>75%</td>
<td>25%</td>
</tr>
<tr>
<td>Residents are prepared</td>
<td>90%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Spraker et al. Prac Radiat Oncol, accepted (2018)
https://www.campep.org/ResidencyStandards.pdf. Both report No 249 and CAMPEP requirements note safety education – including FMEA & RCA. ACGME CLER pathway since 2006: 2 of 6 focus areas are safety &QI, Pathway to Excellence guide advocates Q&S education and that it should be experience-based
Residency at UW consists of 16 rotations. Quality and safety is one of them.
This is NOT radiation protection

- Exposure
- Effective dose, dose equivalent
- Annual limits
- Shielding
- Surveys

These are part of a separate “Radiation Protection” rotation
Key components

- Failure mode and effects analysis (FMEA)
- Incident learning
- Root-cause analysis
- Safety culture
- QA and error proofing
Safety Program for Residents

EDUCATION

A patient safety education program in a medical physics residency

Eric C. Ford | Matthew Nyflot | Matthew B. Spraker | Gabrielle Kane |
Kristi R. G. Hendrickson

Safety Program for Residents

- Goal: Broad education in safety and quality
- Attend ILS meetings thru all 2 years
- 6 week rotation
- Readings and lectures, 2 projects, evaluation
- Progress
 - Began 2014 (5 years), 10 residents so far
 - Well received
Incident learning is one key component of the program. I do not have time in this talk to delve into incident learning in any depth, but here is a comprehensive review published recently. 19 pages. This is a key resource for us for teaching.
Note – every resident is expected to DO a root-cause-analysis (not just read about it)
Root Cause Analysis (RCA)

From Imperial college London (note there are others e.g. Cntr of pt safety, VA), Handy 20-page document with tables, easy to digest
Figure 4: Chronological Mapping of CDPs and Associated Contributory Factors

<table>
<thead>
<tr>
<th>CDPs</th>
<th>Contributory Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Care Delivery Problems (what)</td>
<td>Contributory Factors (why)</td>
</tr>
</tbody>
</table>
RCA: the 5 “Why”s
Example RCA

Unclear communications
Management of patient with pacemaker

Slide: courtesy Ryan Price, PhD UWMC
At this phase we focus on the ‘what’ not why. Timestamps in EMR are useful, also detailed interviews with people.

Chronology (What)

• Pacemaker not on consult document (dropped, document update)
• Patient simulated
• Husband mentions pacemaker to nurse and sim staff.
• Note made in OIS (Mosaiq). Urgent plan.
• Dosimetry looks at document (not note). Plans for 18MV.
• Physics initial chart review: notes pacemaker note and 18MV plan.
• Replanned with 6MV.

Slide: courtesy Ryan Price, PhD UWMC
RCA: Contributory factors

- Urgent work
- Incomplete communication
- Workflow does not have consistent modes of communication

Slide: courtesy Ryan Price, PhD UWMC
This event
If sim doesn’t send QCLs.
RCA follow-up

• Presented at department-wide meeting
• New workflow and communications methods

“I don’t trust those newfangled, battery-powered pacemakers.”
Conclusions

- Safety education: Key need in residency
- Experiential learning
- Benefits to program

Imagine what your program will look like when you do two RCAs every year.
Acknowledgments

Lulu Jordan, (BS)RTT
Lora Holland, (BS)RTT
Patty Sponseller, CMD
Matt Spraker, MD
Alan Kalet, PhD
Mark Phillips, PhD
Matt Nyfot, PhD
Jing Zeng, MD
Ralph Ermoian, MD
Gabrielle Kane, MD

Medical Physics Residents!