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Learning objectives

* To review the current state-of-the-art methods on
automated contour segmentation for treatment planning

* To understand the challenges and potentials on
automated contour segmentation
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Background

» Clinical contouring is critical for treatment planning:
- directly impact dosimetry quality and clinical decision
- time consuming and labor intensive

« Contour is one of the largest sources of dosimetric uncertainty
=

« contour error and variation -
« quality of contouring:
- spatial accuracy

« dosimetric accuracy
Jameson M. et al. J MedI Img Radit Onc 54 (2010)
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Automated contour segmentation

* Seek to reduce time and inter-observer variability
« Clinical applications:
« Standard treatment planning
« Adaptive treatment planning
« Motion tracking and gating
» Commercial products available, but not frequently used in clinical
practice
« Conflict findings reported on contour accuracy and time saving
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Automated segmentation methods

* Non prior-knowledge
- Directly based on image voxel intensities and/or gradient
« High contrast structures e.g. lung, bone, air cavity

* Prior-knowledge
« Atlas based segmentation
- Statistical model based segmentation: Shape (SSM) or Appearance (SAM)
« Machine learning based segmentation
« Hybrid segmentation
Sharp et al. Medical Physics, Vol. 41, No. 5, 2014
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Atlas based segmentation

[ Single-Atlas Selection ]

New image

Voting schemes:
Majority voting
Intensity weighting
STAPLE ...
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Performance of atlas based segmentation

* Quality of atlas images and reference contours

« Atlas selection strategy: robust metric

» No consensus on database size

* Multiatlas can improve robustness of segmentation
« Prone to topological error
«Voting scheme is crucial

» Combination of Multimodality

images (MRl and CT) Single atlas - Multiatlas - turquoise ~ Reference -green
D. Teguh et al. Int. J. Rad Onc Biol. Phys., Vol. 81(4), 2011
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Atlas based segmentation - DIR

* Quality of segmentation
highly relies on deformable —
image registration (DIR)

* Ground-truth is not
available

« Many different approaches ™™
and transformation modes

Brock et al. Med. Phys. 44 (7), July 2017
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Statistical model based segmentation

« Confine the segmented contours to anatomically plausible shape or
appearance

» Require training dataset to characterize variation of shape or

appearance of structure 3880 - MO AN

SHAPE AND SHAPE WAATIONS

« Fit the test image to the
model based on image
intensities, gradients,

features etc.

vt e T Biglino et al. Heart, 2016 0:1-6
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Machine-learning based segmentation

« Outstanding performance in classification, detection, pattern
recognition

+ Automatically learn priors for structures or image context and tissue
appearance ;

« Require training and significant
computational resource

* Usually combined with shape model or
atlas based methods

Lustberg et al. Radio and Onc 126 (2018)
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Segmentation for adaptive planning

« Intra-object segmentation for anatomy at two different time points
« Deformable image registration is the most popular method

« Time constraints require very robust and accurate segmentation
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ew of segmentation and deformable registration methods
adaptive cervical cancer radiation therapy treatm
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« Literature review of segmentation and registration methods for
adaptive cervical cancer treatment planning:

- Landmark, rigid, B-spline, shape constrained B-spline registration

< A average of 0.85 Dice similarity and mean surface distance of 2-4mm

« The use of shape priors significantly
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improved segmentation accuracy
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Evaluation of segmentation performance

* Geometric
- Moment based
« Center/Volume of structure
- Overlap based
- Dice similarity coefficient
- Distance based
- Average/maximum distance

- Intra-observer variability
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» Dosimetric
- Dose optimization

« Dosimetric metrics (DVHs)

- Clinical decision

Sharp et al. Medical Physics, Vol. 41, No. 5, 2014
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Geometry based evaluation

« Dice similarity index (DSI)
« Insensitive to large structure
-insensitive to fine details
 Hausdorff distance (HD)
« Sensitive to small regions
« Usually use 95% percentile
« May not correlate with each other
« Do not relate to dosimetry!
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Inter-observer variability

* A single manual contour may not truly represent the
ground truth

« Inter-observer and Intra-observer contour variations
exist

» Consensus on contour definition is not always available

* Inter-observer variability should be used as benchmark
to assess the accuracy and robustness of auto-
segmentation
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From geometry to dosimetry

Stiehl B et al. AAPM 2017
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Auto-segmentation Challenge
« Allows assessment of state-of-the-art segmentation methods under unbiased
and standardized circumstances:
« The same datasets (training/testing)
- The same evaluation metrics
+ Head & Neck Auto-segmentation Challenge at MICCAI 2015 conference
- Date from RTOG 0522 clinical trial
- 25 datasets as training data
« 10 datasets for off-site and 5 for on-site (2 hours) testing
« 9 anatomical structures (brainstem, optical chiasm, mandible, parotid glands and
submandibular glands)
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Taac IIL. Comparison of the main featurcs of the participants” scgmentation approaches.

Team ( Segmentuion pprosc® Nonrigid registration Inkializaiion Similarity measure
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Raudaschl et al.: Medical Physics, 44 (5), 2017
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Mandible: AAM - active appearance model

.
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Exclusion of teeth SSM - statistical shape model
Image artifacts from dental implant
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Method AAM Image Processing
Dice 0.93 0.785 0.728
95%HD(mm) 2.041 5.919 29.458
David Geften Raudaschl et al.: Medical Physics, 44 (5), 2017
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Parotid glands:

Large shape variation

Team Dice Max HD [mm)

Poor soft tissue contrast
m oxis 1200

Heterogeneous tissue including ™ o226 .
vessels and ducts

ASM AAM AAM
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More on segmentation challenge

* AAPM 2017 Thoracic Auto-segmentation Challenge

* RTOG 1106 contouring atlas

« 36 training sets, 12 offsite test and 12 live competition cases

« Intra-observer contour variability considered

N+ Xiao Han (Elekta Inc.)
[#3 Autometic Thoracic CT imoage Segmentation using Deep Convolutional Neural
jetworks —_—

g * Xue Feng (University of Virginia)
A 3D UNet based thoracic segmentation framework using cropped images

N * Bruno Oliveira (University of Minho)

Automatic Multi-organ Segmentation in 30 Computed Tomogrophy
David Gette
Schol af Medic
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Summary

» Automated segmentation has shown promising performance in
contouring for treatment planning

» Improvement on robustness, accuracy and throughput is still needed:

- Consensus on contouring and benchmark database

- Standardization of imaging acquisition; improvement of image quality;
combination of multiple image modalities

« Advancement in model and machine-learning based algorithms
« Quality metrics and QA tools for spatial and dosimetric uncertainties
- Effective translation from research to clinic with sufficient user training
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